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1. — Introduction.

We study the nonlinear dynamics of a shallow-water layer in uniform rotation,
which models the behaviour of large-scale atmospheric and oceanic flows. Its
evolution is described by Saint-Venant equations, that we integrate numerically.
We focus on the case of decaying turbulent flows dominated by divergent
motions and subject to different rotation rates, in order to better understand the
nonlinear dynamics of inertio-gravity waves.

2. — Saint-Venant equations.

Saint-Venant equations, also called shallow-water equations, describe the
fluid motions in a rotating stratified shallow-water layer of depth & (fig. 1) and
can be written in terms of the vorticity, divergence and geopotential time
evolutions,

L+divE+fH)V=D,
S—rot(E+)V+A(+V¥2)=D,
¢+ div(gV) =D,
with ¢ = gh, geopotential, V, velocity, £=rot V, vorticity, &= div V, divergence,
D, dissipation, f, Coriolis parameter, g, acceleration of gravity.

Due to stratification the equations have become two-dimensional.
The invariants of the inviscid Saint-Venant equations are energy

E=(Q12)(¢+¢V?),
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Fig. 1. — Rotating shallow-water layer.

( ) means averaged over the plane, and potential enstrophy
S=172) ((E+[f)1$) .

These invariants being nonquadratic, the modal energy decomposition is only
possible if we consider the equations linearized around a rest state (6=£=0 and

$=¢):
E+fe=0, &—fE+As=0, &+ ¢6=0.

These linearized equations then yield quadratic invariants, namely linearized
energy

E =1/2) (¢*+ §V?)
and linearized potential enstropy

S"=(1/2) (3& - f3).

The flow can now be separated into two classes of normal eigenmodes
corresponding to

1) potential vortices (indexed V), which are nondivergent, stationary and
contain all the linearized potential vorticity of the flow;

2) inertio-gravity waves (indexed G), which propagate with velocity ¢ =
=§'?, are dispersive in the presence of rotation, w = (¢2k* + 22, and contain all
the divergent components of the flow.

We numerically solve the full Saint-Venant equations, using a pseudo-spectral
technique for the space integration, associated to a leapfrog time scheme [1]. We
choose different initial flows which are Gaussian random fields, whose energy is
injected at k;=3 and which contain different levels of excitation of the
divergence field, corresponding to the divergence energy which varies from 15%
up to 99% of the total energy. We consider two different rotation rates, namely
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f=10"*s"'and f=6-10"* s}, which correspond to a Rossby deformation wave
number kq=flc of, respectively, ks=2 and ks=12; the Rossby deformation
radius 74 = 2r/k4 gives the scale below which the flow becomes insensitive to the
effect of the entrainment rotation. During the flow evolution there is no more
energy injection. We, therefore, study the evolution of a decaying turbulent
flow. The computing grid is 1282, which corresponds to 64 Fourier modes k = | k|,
and we follow the flow evolution on very long time scales, of the order of several
hundreds eddy turn-overs or 75000 inertio-gravity wave periods.

3. — Inviscid statistical equilibria.

The natural tendency of an inviscid two-dimensional system, having a finite
number of degrees of freedom and presenting a combination of rotational and
divergent motions, is to accumulate potential enstrophy and inertio-gravitational
energy in the small scales and potentio-vortical energy in the large scales[2, 3].
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Fig. 2. - a) Energy spectra of the inviscid statistical equilibrium. (In all figures @
characterizes the energy of potential vortices, A characterizes the energy of inertio-
gravity waves, ®m characterizes the potential enstrophy of potential vortices.) b) Time
evolution of energy and potential enstrophy.
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This comes from the fact that the potential vortices behave as in the two-
dimensional incompressible case, presenting an energy equipartition spectrum
(k*1) for k— 0 and an enstrophy equipartition spectrum (k™) for k— k.. On the
contrary, the inertio-gravity waves are not constrained by the potential
enstrophy conservation, but only by the energy conservation, which leads then
to an energy equipartition spectrum (k*!) at all scales.

The numerical integration of the inviscid Saint-Venant equations gives the
same spectra as those predicted (fig. 2a)) and confirms the good conservation
properties of the chosen numerical scheme (fig. 2b)). Then, knowing the
statistical equilibria, we can predict that, in the viscous case, there should be a
dissipation of both potential enstrophy and inertio-gravitational energy, while
the potentio-vortical energy should present an inverse cascade towards large
scale where it would pile up.

The very different behaviours of potential vortices and inertio-gravity waves
suggest that different parametrizations may be necessary depending on which
component will dominate. The operator needed to model the subgrid-scale
effects should indeed dissipate the potential enstrophy of potential vortices, as
for two-dimensional incompressible flows, but also the divergence energy of
inertio-gravity waves.

4. — Viscous behaviour.

As we have seen, we can separately study the potential vortex dynamics and
the inertio-gravity wave dynamics if we are in the limit of weak geopotential
fluctuations. Considering first the dynamics of potential vortices, its
characteristic time corresponds to the rotational nonlinear transfers at scale k7,
which can be evaluated from a root-mean-square measure of the velocity shears
due to structures whose scale is larger than k™, i.e. from the kinetic enstrophy
integral, such as

2

0= [P+ B (ap|

with k; the Rossby deformation wave number.
We can then calculate the potential enstrophy cascade rate, in the spectral
range k> ky not affected by rotation, as

7=~ kS (k)= (k) .

This yields the same energy spectral distribution as for two-dimensional
incompressible flows[4], namely,

By (o) =7k,
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Fig. 3. — a) Energy spectra in the viscous case for a flow having initially 15% inertio-
gravity waves and submitted to a slow rotation rate (k3 = 2). b) Time evolution of energy
and potential enstrophy. ¢) Isolated coherent structures in the vorticity field.
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Fig. 4. — @) Quasi-instantaneous inertio-gravitational energy transfers for a flow having
initially 99% inertio-gravity waves with slow rotation (k4 = 2). b) Inertio-gravity waves in
the geopotential field. ¢) Inertio-gravity waves in the divergence field.
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Considering now the dynamics of inertio-gravity waves, we can follow the same
argument. If we suppose a transfer of divergence energy from the large to the
small scales, its characteristic time corresponds to the transfers of divergence
energy at scale k™', which can be evaluated from a root-mean-square measure of
the gradients of divergent motions, such as

-12

0 =|[p B0 dp

We can then calculate the divergence energy cascade rate:
{=kE' (k) (k).

This yields a k=58 spectral law of the energy distribution as for three-dimensional
incompressible flows[5], namely,

Eé (’C) ~ CQJS k—5/3 .

Using a different approach, ZAKHAROV and SAGDEEV [6] predict a £~'"" spectral
law, namely a — 1.57 slope instead of — 1.66, for nondispersive two-dimensional
acoustic turbulence, a problem which has a physics very similar to the nonlinear
inertio-gravity wave dynamics studied here.

Concerning the energy of potential vortices, the numerical integrations for a
flow having initially 15% inertio-gravity waves (fig. 3a)) show a k™ power law
spectrum. The rotational energy is piling up into the large scales, while the
potential enstrophy is transferred towards the small scales where it is then
dissipated (fig. 3b)). The transfer of potential enstrophy towards small scale is
confirmed, but the slope of the rotational energy is steeper than the predicted
k3 tendency. This results from the spatial intermittency caused by the presence
of coherent structures in the vorticity field (fig. 3¢)): the transfers do not occur
densely in space, but are concentrated in the boundary layers formed at the
periphery of the coherent structures[7].

Concerning the energy of inertio-gravity waves for the same flow, which
initially contains 15% inertio-gravity waves, we find a k° spectrum for the scales
smaller than the injection scale k; and larger than the dissipative scale k4 (fig.
3a)). We observe that the inertio-gravity wave energy reaches the small scales
where it is dissipated (fig. 3b)), which explains the process of geostrophic
adjustment in shallow-water flow, i.e. the dominance of potential vortices over
inertio-gravity waves which ultimately disappear. The observed k° spectrum,
steeper than an equipartition spectrum (k*'), is probably related to the shape of
the shocks which would develop in the absence of dissipation. Indeed, the
shallow-water model, contrary to the Korteweg-deVries model, is not dispersive
and, therefore, produces shocks which tend to break. This wave breaking,
possible in the absence of dissipation, is easy to understand if we consider the

13 - Rendiconti S.I.F. - CIX



194 M. FARGE

simple case of a wave propagating with amplitude 4’ in a shallow fluid layer of
mean depth H. The wave trough travels with the group velocity v, = (gH)™,
while the wave ridge travels with the velocity v, = (g (H + h'))*2. Therefore, the
ridge moves faster than the trough and, consequently, must eventually break. In
fact, this behaviour is not realistic, because in an actual fluid the shocks will get
dispersed (as for the Korteweg-deVries model) through the emission of capillary
ripples, which then will limit the process of wave breaking. But in the shallow-
water model the dissipation may play the same role as dispersion in damping the
strong geopotential gradients before shocks get formed and eventually break.

It is important to notice that we are still in the domain of validity of the
shallow-water hypothesis, because the smallest spatial scales considered here
remain 10 times larger than the water depth, and the vertical velocities are
negligible, although their gradients may be strong.

The quasi-instantaneous transfers (fig. 4a)) for a flow having initially 99%
inertio-gravity waves show that the divergence energy is transferred back and
forth with no overall direction: waves do not seem to cascade, divergence energy
being only dissipated (fig. 5b)) when, by chance, some wave interactions bring

0™

10—-16_
10—18_
- a)
10—20 1 { L1t g g ] ] I A
10° 10"
Log k
EIS
1
b)
8-
0 t

Fig. 5. - a) Energy spectra in the viscous case for a slow rotation rate (kq=2) with a
.rotational turbulent viscosity only. ) Time evolution of energy and potential enstrophy.
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energy into the small scales. The prediction done on phenomenological grounds,
leading to a k~°? spectral slope, close to the k~"!! slope predicted by ZAKHAROV
and SAGDEEV [6], is not verified, because it is based on the hypothesis of an
overall energy cascade towards small scales that we do not actually observe.

The k° spectrum we again obtain in this case (fig. 5a) and 6a)) can be
interpreted in terms of the shape of the singularities which tend to develop in
this shallow-water flow. By visualizing in physical space the fields corresponding
to the inertio-gravity waves, namely the geopotential (fig. 4a)) and divergence
(fig. 4b)) fields, we observe the formation of spikelike features. As a first
approximation we consider them to be axisymmetric and we suppose a radial
shape such as f(r) = e, r being the distance from the centre of the spike and g
a real exponent. From there we calculate that the two-dimensional energy
spectrum should vary as

E(|k[) o= k|77,

Considering the fact that we experimentally observe a k° spectrum, we can
predict that B= —2, which would correspond to a singularity such as
f(r)=r*e, if dissipation would not have been there to smooth it.

5. — Subgrid-scale parametrization.

We have tested different subgrid-scale parametrizations designed to dissipate
both potential enstrophy and inertio-gravity wave energy in the small scales. In
all cases we choose the hyperdissipation operator A%, with «>1, which is
commonly used and has proven its adequacy in the context of two-dimensional
turbulence [7]. We consider here « =8, which gives an hyperdissipation highly
selective in scales, that we apply to all fields, namely to the vorticity, divergence
and geopotential fields. In the shallow-water model the geopotential dissipation
is needed for physical reasons, because a strong geopotential gradient cor-
responds indeed to a strong gradient of vertical velocity, which has to be
dissipated too. Therefore, we dissipate the geopotential, i.e. the free-surface
height, in order to control the vertical velocity gradients and the process of wave
breaking.

We have tested three different kinds of subgrid-scale parametrization that we
apply at each time step to selectively damp the enstrophy of the potential
vortices and the energy of the inertio-gravity waves, which both cascade
towards the small scales where they are dissipated.

1) The first parametrization (fig. 5a) and b)) dissipates the potential
vortices and the waves with the same vA® operator and the viscosity v is adjusted
on the rotational motions only (vgz being then called the «rotational turbulent
viscosity»), i.e. on the transfer rate of kinetic enstrophy through the cut-off scale
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Fig. 6. — a) Energy spectra in the viscous case for a slow rotation rate (k= 2) with both
rotational and divergent turbulent viscosity. b) Time evolution of energy and potential
enstrophy.

k., such as
vg = K6 (£2)12

2) The second parametrization (fig. 6a) and b)) again dissipates the
potential vortices and the waves with the same vA® operator, but now the
viscosity v is adjusted on both rotational and divergent motions, i.e. taking also
into acount the transfer rate of divergence energy through the cut-off scale k.,
such as

v= maXiVR, VDI,

with vp = kL% (82)2 v;, being then called the «divergence turbulent viscosity».

3) The third parametrization is designed to selectively dissipate the
inertio-gravity waves with an Asselin’s frequency filter[8] such as

‘anﬁltered =X"4+¢ (AX%_1 — 92X 4+ Xl
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Fig. 7. - a) Energy spectra in the viscous case for a slow rotation rate (kg =2) with an
Asselin’s filter with ¢=10"% b) Time evolution of energy and potential enstrophy.

X vector field at time step n, considering different damping . Actually this
filter, which is a time Laplacian, also acts as a space Laplacian 4% in the small
scales, because there the waves are nondispersive, being insensitive to rotation
for wave numbers larger than the Rossby deformation wave number k;. The
damping ¢ = 10™* (fig. Ta) and b)) appears to be too weak to dissipate the waves
more than the vA® operator; on the contrary, ¢ =10"% (fig. 9a) and b)) strongly
damps the waves until the very large scales close to k; = 3, while ¢ = 1072 (fig. 8a)
and b)) damps the waves only in the small scales beyond & = 30, which seems
more adequate. It is important to notice that, whatever is ¢, the Asselin’s filter
does not affect the potential vortices whose behaviour remains unchanged.

In conclusion, we choose the second parametrization as the most appropriate,
because it does not require any ad hoc parameter, as the ¢ damping of the
Asselin’s filter, and it takes into account the cascade of both kinetic enstrophy
and divergence energy towards the small scales, while the first parametrization
neglects the transfers of divergent motions. We notice that the tendency
towards a k° spectrum for the inertio-gravity energy survives whatever
parametrization we choose; this should be thought as a very basic behaviour of
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Fig. 8. — a) Energy spectra in the viscous case for a slow rotation rate (kq = 2) with an
Asselin’s filter with ¢ =102, b) Time evolution of energy and potential enstrophy.

the shallow-water dynamics and not as a numerical artifact depending on the
subgrid-scale parametrization.

6. — Effect of rotation.

The experiments discussed in sect. 4 and 5 correspond to a slow rotation rate,
f=10"*s7! or k; = 2, therefore all the scales in the inertial range, corresponding
to wave numbers between k; = 3 and k. = 64, are insensitive to rotation, because
in this case k>k; We now consider a higher rotation rate, namely
f=6-10"*s"", corresponding to k; = 12, for which the large scales, in the range
between k; =3 and ky=12, are then submitted to the effect of rotation.

If we first consider the dynamics of potential vortices, we observe that the
rotation reduces both the direct potential enstrophy cascade and the inverse
rotational-energy cascade (fig. 10a)). This comes from the fact that the potential
enstrophy S separates into a kinetic contribution Sy, and a potential contribution
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Fig. 9. — a) Energy spectra in the viscous case for a slow rotation rate (k4 =2) with an
Asselin’s filter with ¢=1072 b) Time evolution of energy and potential enstrophy.

Spet, Such as
S=(c/2) [ (& + k) By () dk = Sign + Syt
with Evy (k) rotational energy of each potential vortical mode,

Si = (¢/2) f KB, (k) dk
and

Spor = (e/2) [ KB (k) k.

Therefore, when k, is large, i.e. for strong rotation rates, most of enstrophy is
potential and stays in the large scales, while only the remaining amount, which is
kinetice, cascades towards the small scales: both this direct enstrophy cascade
and the associated inverse rotational-energy cascade are weakened under the
effect of rotation. This can also be observed on the structure of the vorticity field
in physical space (fig. 10c)): the vortices are no longer isolated and we do not see
any background flow of vorticity filaments produced by the direct enstrophy
cascade as it is the case when rotation is small (fig. 3c)).
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Fig. 11. — Dispersion diagram of inertio-gravity waves in a rotating shallow-water layer.
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Fig. 12. — Quasi-instantaneous inertio-gravitational energy transfers for a flow having
initially 756% inertio-gravity waves submitted to a fast rotation rate (k= 12). '
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Fig. 10. — a) Energy spectra in the viscous case for a flow having 75% inertio-gravity
waves initially submitted to a fast rotation rate (k4 = 12). b) Time evolution of energy and
potential enstrophy. ¢) Nonisolated coherent structures in the vorticity field.
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If we now consider the dynamics of inertio-gravity waves, we observe that
the rotation strongly inhibits the transfers of inertio-gravity energy towards the
small scales and the related dissipation (fig. 10b)), while the corresponding
spectrum stays frozen close to its initial distribution (fig. 10a)). This is readily
explained by looking at the dispersion law (fig. 11):

o= (ck? + fOM = c(k? + k"> ~ ¢ (k + k3/2K),

with o the inertio-gravity wave frequency, which shows that waves |k|</k, are
dispersive, they cannot have triadic interactions but only quartic, and, there-
fore, the nonlinear transfers (fig. 12) between those wave modes are strongly
reduced under the effect of rotation: no more energy is feeding the small scales
and there is no dissipation of inertio-gravitational energy. In consequence, if
rotation is strong enough, namely if k;>k;, there is no more geostrophic
adjustment, the inertio-gravity waves cannot be dissipated because they remain
trapped in the large scales.

7. — Conclusion.

The nonlinear dynamics of inertio-gravity waves remains an open question,
because we do not have a criterium to decide if the 64 modes we have integrated
are sufficient to correctly describe the system evolution. We numerically predict
that all scales are active, inertio-gravitational energy being transferred back and
forth at random but without presenting an overall cascade and is distributed
according to a k° spectrum. This nonlinear behaviour of two-dimensional shallow-
water equations can be compared to the behaviour of the two-dimensional
Schrédinger equation, which also tends to spread energy into higher and higher
modes. In the absence of a predominant direction of transfers, it will be very
difficult to develop a statistical theory of the nonlinear inertio-gravity wave
motions, as has been done for turbulent motions. In consequence, the subgrid-
scale parametrization may be difficult to ascertain if the small scales are not
slaved by the large-scale dynamics feeding them. A better theoretical insight is
needed here, because this behaviour may impair the numerical approach in this
case, the nonlinear inertio-gravity wave dynamics appearing resolution
dependent due to the k° spectral tendency we observe.

% kX

The computing has been done on the Cray 2 of C2VR, Palaiseau, using as
front-end the IBM 3090 of CIRCE, Orsay. High-resolution raster displays have
been done at LACTAMME, Ecole Polytechnique, in collaboration with J.-F.
COLONNA.
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