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‘In the last decade we have experienced a conceptual shift in our view
of turbulence. For flows with strong velocity shear ... or other organiz-
ing characteristics, many now feel that the spectral description has inhib-
ited fundamental progress. The next “El Dorado” lies in the mathematical
understanding of coherent structures in weakly dissipative fluids: the for-
mation, evolution and interaction of metastable vortex-like solutions of
nonlinear partial differential equations ... .” Norman Zabusky (1984)

INTRODUCTION

I have chosen to present here a personal point of view concerning the cur-
rent state of our understanding of fully-developed turbulence. By this I
mean the study of dissipative flows in the limit of large Reynolds numbers

*Based upon a talk given in Paris on May 5, 1990 on the occasion of the ‘Journée
Annuelle de la Société Mathématique de France’ and.originally printed (in French) by
the Société Mathématique de France. The translation published here does not include
some elementary material on wavelets which appeared in section 2 of the French version;

furthermore, this version has been slightly revised and updated to include some recent
developments.
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(the Reynolds number being a dimensionless number characterizing the ra-
tio of the nonlinear advection to the linear dissipation), that is, the limit
where the dissipation becomes negligible so that the dynamics of the flow
is essentially dominated by the nonlinear interactions.

After more than a century of turbulence study (Reynolds, 1883), no con-
vincing theoretical explanation has given rise to a consensus among physi-
cists (for a historical review of the various theories of turbulence, see (Von
Neumann, 1949), (Monin and Yaglom, 1975), (Farge, 1990). In fact, there
exist a large number of ad hoc models, called ‘phenomenological’, that are
widely used by fluid mechanicians to interpret experiments and to com-
pute many industrial applications where turbulence plays a role. However,
it is still not known whether fully-developed turbulence actually has the
universal behavior (independent of initial conditions and boundary condi-
tions) assumed for it in the limit of infinitely large Reynolds numbers and
infinitely small scales. Already in 1979, in an unpublished article (Farge,
1979), I expressed reservations about our understanding of turbulence and
thought that we did not yet know which are the ‘good questions’ to ask.
Ten years of work on the subject have persuaded me that we have not yet
identified the ‘good objects,” by which I mean the structures and elemen-
tary interactions from which it will be possible to construct a satisfying
statistical theory of fully-developed turbulence.

In my opinion, and as Zabusky expresses in the quotation (Zabusky,
1984) I have used as an epigraph to this article, ignorance of the ele-
mentary physical mechanisms at work in turbulent flows arises in part
from the fact that we reason in Fourier modes (wave vectors), constructed
from functions that are not well-localized; this viewpoint ignores the pres-
ence of the coherent structures that can be observed in physical space and
whose dynamic role seems essential to us. In fact, these coherent structures
are observed both in experiments carried out in the laboratory (Jimenez,
1981), (Van Dyke, 1982), (Couder and Basdevant, 1986) and in numer-
ical experiments based on the fundamental equations of fluid mechanics
(Kim and Moin, 1979), (Basdevant, Legras, Sadourny and Béland, 1981),
(McWilliams, 1984), (Farge and Sadourny, 1989), but the current statistical
theory (Monin and Yaglom, 1975) does not take them into account. Thus,
the visualization of the evolution of two-dimensional turbulent fields nu-
merically computed (Figure 1) leads us to conjecture that the dynamics of a
two-dimensional turbulent flow is essentially dominated by the interactions
between the coherent structures that advect the residual flow situated be-
tween them; the latter itself seems to play no dynamic role. We think that
this point of view can be generalized to three dimensions as well, because
the existence of coherent structures has also been observed in the context of
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three-dimensional flows (Kim and Moin, 1979), (Jimenez, 1981), (Hussain,
1986), but their topology is more complex (Moffatt, 1990). Consequently,
the wavelet transform, which decomposes the fields on a set of functions
with compact (or quasicompact) support and thus permits an analysis in
both space and scale, seems to be a good tool, not only for analyzing and
interpreting the experimental results obtained in two-dimensional turbu-
lence, but also in the long term for attempting to construct a more satis-
factory statistical theory of fully-developed turbulence (see color plate for
Figure 1).

1. FULLY-DEVELOPED TURBULENCE
1.1. THFE EQUATIONS

The fundamental equation of the dynamics of an incompressible (constant
density throughout time) and Newtonian (stress proportional to the veloc-
ity gradients) fluid is the Navier-Stokes equation:

oV + (V- V)V + VP = V2V + F,

V-V =0, 1)
initial conditions,

boundary conditions,

where V is the velocity, F is the resultant of the external forces per unit
of mass, and v is the kinematic viscosity.

We remark here that the mathematical intracability of the Navier-Stokes
equation arises from the fact that the small parameter v, which tends to
zero in the limit of large Reynolds numbers, i.e. for very turbulent flows,
appears in the term containing the highest-order derivative, namely the
dissipation term yV2V. Thus the character of the equation, which is
given by the term containing the highest-order derivative, changes as v
tends to zero, since in this limit it is the advection term (V - V)V that
dominates. When v = 0, or Re = oo, the Navier-Stokes equation is called
Euler’s equation and the nonlinear advection term is no longer controlled
by the linear dissipation term. Moreover, Euler’s equation conserves en-
ergy whereas the Navier-Stokes equation dissipates it; thus the former is
reversible in time whereas the latter is irreversible.

If one takes the curl of equation (1), one can eliminate the pressure term;
this gives the equation of the curl of the velocity, also called the vorticity
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8G+(V-V)3 = (3- V)V +0V25 + V x F )
5=V,

If one considers a regime state, i.e. a state of the flow such that the energy
contribution from the external forces is dissipated by the viscous friction,
then:

% =(J-V)V. (3)
Thus, in three dimensions, the Lagrangian variation of vorticity is equal
to the product of the vorticity by the velocity gradients, which leads to
stretching of the vorticity tubes by the velocity gradients, a mechanism
that may explain the transfer of energy towards the smallest scales of the
flow in three dimensions (cf. Section 1.2).

In two dimensions, vorticity becomes a pseudo-scalar, for & = (0,0,w) is
then perpendicular to V'V . Therefore in this case, the vorticity stretching
by the velocity gradients is no longer possible. Indeed in two dimensions,
the vorticity is a Lagrangian invariant of the motion because, in the absence
of dissipation, it is conserved throughout time along a fluid trajectory:

dL—‘}' —
— =

If we now consider the vorticity gradients, we have:

0. (4)

VW + (V- V)Vw = —(Var - V)V . (5)

Thus, in two dimensions, the Lagrangian variation of the vorticity gradients
is equal to the product of the vorticity and velocity gradients, a mechanism
that may explain the transfer of enstrophy towards the smallest scales of
the flow in two dimensions (cf. Section 1.2).

1.2. THE INVARIANTS

In the absence of external forces (F = 0) and of dissipation (v = 0),
Euler’s equation (i.e. the Navier-Stokes equation for v = 0) conserves
energy in two and three dimensions:
1 [t

E(t) = —/ V#(Z,t)d" ¥ = constant, (6)
—oo
where n is the dimension of the space. Using Plancherel’s identity, we
have:

— 00

too N o . o
E(t) = %/ VE(k, t)d"k = / E(|k|,t)d"|k| = constant , (7)
0
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where

+o0 .

V(k) = / V(&) Edrz

— 00
and E(k) is the energy integrated in spectral space over crowns of con-
stant radius |k| . E(k) characterizes the distribution of energy among
the various scales (in the sense of wave numbers) of the motion, a modal
distribution predicted by the statistical theory (cf. Section 1.4).

In the special case of two dimensions, which is particularly interesting

for studying the large-scale dynamics of geophysical flows for which the
two-dimensional approximation is valid, Euler’s equation also preserves en-

strophy:
I
Qt) = 5/ w?(Z,t)d*Z = constant (8)
or using Plancherel’s identity:
1 +o0 . . oC . .
Qt) = 5/ &2 (k,t)d*k = / Z(|k|,t)d?|k| = constant (9)
—o0 0

where
+oo .
o(k) = / w(Z)e* TPz
— o0
and Z(k) is the enstrophy integrated in spectral space over crowns of con-
stant radius |k| . Z(k) characterizes the distribution of enstrophy among
the various scales (wave numbers) of the motion and, on imposing hypothe-

ses of homogeneity and of isotropy in the statistical sense (cf. Section 1.4),
one can relate it to the modal energy and obtain:

Z(k) = k*E(k) (10)
where k = |k|.

1.3. UNIQUENESS, REGULARITY AND ANALYTICITY
OF THE SOLUTIONS

We shall attempt to summarize briefly the existing theorems on uniqueness,
regularity and analyticity of the solutions of the Euler and Navier-Stokes
equations in two and three dimensions. In general, these various theo-
rems consider regular initial conditions, i.e. they use C*> functions with
bounded support in R™ . In this case, in two dimensions the Lagrangian
conservation of vorticity (4) implies that:

lw|lLee = sup|w(z,y)| = constant , (11)
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which leads to the prediction that Euler’s solutions remain regular for all
times in a bounded domain (Lichtenstein, 1925), (Wolibner, 1933), (Holder,
1933), (Schaeffer, 1937). Kato (Kato, 1972) has shown that this remains
true even if the initial velocity is C'*¢ (e > 0). However, we still do not
have a regularity theorem for the Euler solutions in an unbounded domain,
unless the solutions are constrained to decrease at infinity. An interesting
special case, worth noting here, is that of the Kelvin-Helmholtz instability
that develops at the interface between two flows of different velocities; if
the initial flow presents a discontinuity of the velocity at the interface, it
was conjectured by Birkhoff (Birkhoff, 1962), and then proved (Babenko
and Petrovich, 1979), (Sulem et al, 1981), that if the interface is initially
an analytic curve, then it remains so for a finite time. However, an asymp-
totic expansion of Moore (Moore, 1979) and numerical results (Meiron
and Baker, 1982) suggest that this curve will ultimately always develop a
singularity. In two dimensions, the global regularity of the Navier-Stokes
equation in an unbounded domain — and this for any viscosity — is a
consequence of the regularity of Euler’s equation for a bounded domain.
Ladyzhenskaya (Ladyzhenskaya, 1963) and Lions (Lions, 1969) have proven
the global regularity of the Navier-Stokes equation in two dimensions, pro-
vided that the viscosity is sufficiently high. However, for the limit of v
tending to zero, the problem remains open because one does not know how
to take into account the boundary layers that develop at the walls.

In three dimensions one shows that, assuming regular initial conditions,
one has uniqueness, regularity and analyticity in the following cases:

e for all times, provided that the viscosity is high enough (Reynolds
< 1 initially) (Leray, 1933);

e for arbitrary viscosity and arbitrary boundaries, provided that time
is sufficiently long (Leray, 1933), or for short times in the absence of
boundaries (Kato, 1972);

e for all times, but for dissipation of the form —v'(=V?%)®, where
v' >0 and «a >5/4 (Ladyzhenskaya, 1963), (Lions, 1969).

For more detailed expositions on this subject, see (Rose and Sulem,
1978), (Frisch, 1983) and (Temam, 1984).

We note here that the Lagrangian conservation of vorticity (4) for Euler’s
equation in two dimensions implies that, if the initial field of vorticity has
N singularities, these will be conserved for all time, and thus there will
not be any regularization of the flow in the absence of dissipation (Farge
and Holschneider, 1990); we will return to this point in the last part of the
article.
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1.4. STATISTICAL THEORY AND SPECTRAL SLOPES

It is first of all necessary to note that the statistical theory of fully-
developed turbulence, which is attributed to Kolmogorov, was discov-
ered quasi-simultaneously by him (Kolmogorov, 1941a,b,c), and others
(Obukhov, 1941), (Onsager, 1945), (Heisenberg, 1948), and (Von Weizs-
acker, 1948), each using different methods that we shall not present here.
(see (Battimelli and Vulpiani,1982) for a review of the history of this sub-
ject.) Kolmogorov studied the way in which the Navier-Stokes equation
in three dimensions distributes the energy among the various degrees of
freedom of the flow. This type of approach is very classical in statistical
mechanics, but the difficulty here arises from the fact that turbulent flow
is an open thermodynamical system, that is, not isolated from the exterior,
due to the forces acting on the flow either at large scale (external forces) or
at small scale (viscous frictional forces). It is therefore necessary to limit
oneself to a range of intermediate scales, called the inertial range, where
one supposes that energy is transferred between the various degrees of
freedom, namely the scales of the flow, and this in a conservative manner.

We thus have:
AKIikKL, (12)

where

e )\ denotes the dissipative scales where kinetic energy is transformed
into thermal energy under the effect of viscous friction,

e / denotes the scales of turbulent motion dominated by nonlinear
advection that transfer kinetic energy between them in a conservative
manner, and

e I. denotes the integral scales where energy is injected by external
forces.

Kolmogorov assumes that for this range of scales £, the flow is statistically
homogeneous, that is, invariant under translation, and isotropic, that is,
invariant under rotation. (‘Statistical’ here means in the sense of Gibbs
ensemble averages, i.e. in averaging from a set of realizations of the same
flow.) He also assumes that the energy is transferred, from the large to
the small scales, at a constant rate e which is independent of scale and
equal to the quantity of energy dissipated by the scales smaller than A.
He adds to this the hypothesis that the skewness S , namely the departure
from Gaussian behavior of the velocity probability distribution, is constant.
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From this he deduces the following scale law for the two-point correlation
function of the velocity: )

(Ju(r +£) —v(r)]?) ~ Ce?/3¢2/3 (13)

where C = —4£/(5S) is Kolmogorov’s constant. Upon Fourier trans-
forming to the space of wave vectors k, this yields:
1 [T 0 o=
£=- V2(k)d®k ~ Ce¥/3k=2/3 (14)
2 — 00
Considering now the energy integrated over crowns of constant radius k =
|k|, we obtain the (Kolmogorov) spectrum (Figure 2a):

E(k) ~ Ce¥/3k=5/3, (15)

Notice here that Kolmogorov never expressed his law in Fourier space,
whereas the same result is obtained from the theory of Heisenberg (Heisen-
berg, 1948) or Von Weizsdcker (Von Weizsdcker, 1948) working directly in
spectral space.

Following a remark of Landau (Landau and Lifchitz, 1971) concern-
ing the random character of energy transfers in the inertial zone, Kol-
mogorov (Kolmogorov, 1961) added to his law (13) a lognormal correction
in (In(L/¢))?, B being the dispersion constant of the logarithm of «.
Various experiments carried out in wind-tunnels (Batchelor and Townsend,
1949), (Anselmet, Gagne, Hopfinger and Antonia, 1984) have shown that
the energy associated with the small scales of a turbulent flow is not densely
distributed in space. This observation of a spatial intermittency of the sup-
port of the energy transfers has led several authors to conjecture that this
support is fractal (Mandelbrot, 1975 and 1976), (Frisch, Sulem and Nelkin,
1978) or multifractal (Parisi and Frisch, 1985), which also gives rise to a
correction of the Kolmogorov spectrum (15), of the form (kL)~(3-D/3)
D being the Hausdorff dimension of the dissipative structures.

In two dimensions, the conservation of enstrophy, related to energy by
the relation (10), leads to a modification of the statistical theory, con-
jectured by Von Neumann (Von Neumann, 1949), since it prevents the
energy from cascading from large to small scales in the limit £ tending
to infinity. The energy is, on the contrary, transferred to the large scales
according to a spectral law similar to that of Kolmogorov (15); this is the
inverse energy cascade of two dimensional turbulence (Figure 2b). Kraich-
nan (Kraichnan, 1967) and Batchelor (Batchelor, 1969) have shown that
there is then another cascade, but of enstrophy (9) from large to small
scales (Figure 2b), and, assuming the rate of enstrophy transfer n to be
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FIGURE 1. Direct numerical simulation of a decaying two-dimensional turbulent flow:

time evolution during 10° time steps computed from a random initial vorticity field
(Farge 1988, Farge and Sadourny 1989).

FIGURE 4.

Dynamics and topology of coherent structures in two-dimensional turbulence.
a. and b.

Elementary interactions: al) Axisymmetrization, a2) Filamentation,

a3) Binding, bl) Deformation, b2) Merging.

Cusp-like shape of the most excited coherent structures (Farge 1988, Farge
and Sadourny 1989).

c. and d.



FiGUure 7. Two-dimensional wavelet analysis computed in Ll-norm, using Morlet
wavelet with kU = 5 and € = 0, of the same two-dimensional turbulent flow as Fig-
ure 6 (Farge, Holschneider, and Colonna 1990).

On the display we have superposed the vorticity field, in perspective representation,
the wavelet coefficients module, color coded in order of increasing luminance (blue, red,
magenta, green, cyan, yellow, white), and the zeroes of the wavelet coefficients phase,
represented by white isolines.

a. Vorticity field to be analyzed (sampled on 5122 points).

b. Wavelet coefficients at scale k = 8.

c. Wavelet coefficients at scale k = 16.

d. Wavelet coefficients at scale k = 32.
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FIGURE 2.  Fourier energy spectra predicted by the statistical theory of
turbulence: a. Kolmogorov spectrum for three-dimensional turbulence (Kol-
mogorov 1941a, b, ¢), b. Kraichnan-Batchelor spectrum for two-dimensional tur-
bulence (Kraichnan 1967, Batchelor 1969).
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constant in the inertial range, they predicted the following energy spectrum
for two dimensional turbulence:

E(k) ~ n?/3k=3 . (16)

Kraichnan (Kraichnan, 1971) added a correction term in (In(kL))~'/3 to
account for the fact that in two dimensional turbulence the transfers are
not local in spectral space.

1.5. NUMERICAL SIMULATIONS AND COHERENT
STRUCTURES

We shall limit ourselves here to the case of incompressible two-dimensional
turbulence. It is very difficult to carry out laboratory experiments under
rigorously two dimensional conditions, whereas numerical simulations can
attain Reynolds numbers much higher in two than in three dimensions
because, for in two dimensions the number of mesh points varies directly
with (Re)!, while in three dimensions it varies as (Re)%/*. In general, the
numerical experiments are carried out with periodic boundary conditions
and are initialized with random fields whose energy is distributed over a
large spectral band, usually up to the cutoff scale of the mesh (Figure 3a).
We then follow the flow evolution both in physical space, by visualizing the
vorticity field (Figure 1) which is the most significant quantity since it is a
Lagrangian invariant of the flow for v = 0, as well as in spectral space, by
plotting the energy spectrum integrated over the crowns IE! = constant
(Figure 3b).

In the numerical experiments of two dimensional turbulence, the ob-
served energy spectra usually follow a power law in k=% (Figure 2b),
and not in k3 as is predicted by the theory of Kraichnan (Kraichnan,
1967) (Figure 2b). It is thought that this disparity is due to the intermit-
tency of the flow, for which we shall propose a geometric interpretation
(cf. Section 2.2) based on the presence of coherent structures we observe in
numerical experiments, but that are not addressed by the statistical theory.

What is a coherent structure? We do not presently have any theory
to describe them, therefore we must content ourselves with a qualitative
description, more similar to the approach of a zoologist than to that of a
fluid mechanician. But this taxonomic and descriptive stage is a necessary
preliminary to any further theory. Basing ourselves on visualizations of
numerically computed two-dimensional turbulent fields (Figure 1), we may
characterize coherent structures in the following way:



CONTINUOUS TRANSFORM OF TURBULENT FLOWS 285

Log €

1 Lttt + 111 ' 1 TR T |

0 L—p Log k

[

A e e e e e e e e

1 | W SR SN N S SN A | i 1 1t 1813

0 ke

¥ Log k

FIGURE 3. Time evolution of the Fourier energy spectrum of a decaying
two-dimensional turbulent flow numerically computed (Farge 1988, Farge and

Sadourny 1989): a. Initial energy spectrum, b. Energy spectrum after 10° time
steps.
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e they are vortical structures, that is, regions of the flow where vorticity
prevails over deformation,

e they contain most of the energy and enstrophy of the flow,

e they form spontaneously by a condensation of the vorticity field, for
which we do not have any theory at the present time,

e they are encountered over a large range of scales; in fact throughout
the whole inertial range if there is no forcing,

e they survive on time scales much larger than the eddy turnover time
7 = Z'/? selected by the statistical theory as being the characteristic
time of the enstrophy transfers.

When one studies the dynamics of coherent structures, one can distinguish
the following states and elementary interactions:

1. relazed state, characterized by

e azimetrization (see arrow 1 on Figure 4a) in the absence of in-
teraction with nearby coherent structures,

2. weakly excited states, with

e either deformation (see arrow 1 on Figure 4b) under the influence
of a nearby coherent structure having the same intensity,

e or filamentation (see arrow 2 on Figure 4a) when the deformation
becomes too strong under the influence of a more intense nearby
coherent structure,

3. strongly excited states, with

e either binding (see arrow 3 on Figure 4a) of two very close co-
herent structures of opposite sign and comparable intensity,

e or merging (see arrow 2 on Figure 4b) of two or more very close
coherent structures having the same sign.

(See color plate for figure 4.)

Although we have defined coherent structures in a purely qualitative
manner using observations obtained from numerical simulations, it is
equally possible to characterize them in a more quantitative manner by
studying the velocity gradient tensor, called the stress tensor:

VV =(VV),; =8;V,=V,;. (17)
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Its symmetric part characterizes the strain undergone by the fluid ele-
ment, and is written:

31’01 -21-(82’01 -+ 81’02)
%(81’02 + 821)1) 827)2

82

1 1
S(VV4+VVY) = =3 , (18)

$1
S22 —81

where VV? is the transposed matrix of VV, and s; = 20;v; = —285v5
since the fluid is incompressible.

Its antisymmetric part corresponds to the rotation of the fluid element,
and is written:

1 0 1(62’01 - 81'U2) 1 0 W
~(VV - VVH = 2 == 19
2( ) %(811)2 - 82’1)1) 0 21—w O ( )
Adding (18) and (19), the equation (17) becomes:
1 S1 Sy +w
vV = 25— —s (20)

Calculating the curl of the vorticity equation (2), with neither forcing (}.5" =
0) nor dissipation (v = 0), one obtains the equation of the curl of the
vorticity, also called the divorticity £ = V X w = (Gw — 01w, 0):

B+ (V- V)E = (VV)E
e (T T = (Ve -

Assuming that the spatio-temporal variations of the strain tensor VV are
slow compared to those of the curl of the vorticity & (the hypothesis of
(Weiss, 1981)), equation (21) becomes linear in Lagrangian coordinates:

{“Grdne ”2)

The eigenvalues of the stress tensor are
1 oo 2 a1/
o= i§ —det(VV) = :1:5[31 + 85 —w?]H=. (23)

One can then separate the flow into two types of regions where the La-
grangian dynamic is different:

a) elliptic regions (Figure 5a) corresponding to the purely imaginary
eigenvalues, where rotation dominates strain and for which two ini-
tially close fluid particles remain nearby for all time, their distance
oscillating only slightly throughout time. These regions are thus as-
sociated with the geometrically stable coherent structures,
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FIGURE 5. Dynamical characterization of a coherent structure in two-
dimensional turbulence. a. Elliptic region corresponding to the coherent struc-
ture: two nearby particles at t; will remain close at t;. b. Hyperbolic region
corresponding to the vorticity filaments emitted by the coherent structure during
a deformation: two nearby particles at t; will separate exponentially after t,.

b) hyperbolic regions (Figure 5b) corresponding to the real eigenval-
ues of opposite sign, where strain dominates rotation and for which
two initially close fluid particles separate exponentially as time goes,
their distance being contracted in one direction and dilated in the
other. These regions are thus associated with the vorticity filaments
stretched by the velocity gradients.

In conclusion, in view of the numerical simulations we have carried out,
we conjecture that the dynamics of two-dimensional turbulent flows is es-
sentially dominated by the interactions between the coherent structures
that advect the residual flow. This background flow is formed by the vor-
ticity filaments emitted during the vortex interactions, but it only plays a
passive role, contrarily to the coherent structures which are dynamically
active. If this conjecture is verified, it then becomes important to find a
method capable of separating the coherent structures from the background
flow, not by a thresholding technique such as the one we have just pre-
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sented, but rather by using a filtering technique that respects the local
regularity of the flow (cf. Section 2.3).

2. WAVELET ANALYSIS OF TWO-DIMENSIONAL
TURBULENT FLOWS

2.1. RESULTS

It is important to realize that the wavelet transform is not being used
to study turbulence simply because it is currently fashionable; but rather
because we have been searching for a long time for a technique capable of
decomposing turbulent flows in both space and scale simultaneously. If,
under the influence of the statistical theory of turbulence, we had lost in
the past the habit of considering the flow evolution in physical space, we
have now recovered it thanks to the advent of supercomputers and their
associated means of visualization. They have revealed to us a menagerie
of turbulent flow patterns, namely, the existence of coherent structures
and their elementary interactions (cf. Section 1.5) for which the present
statistical theory is not adequate.

During the 1980’s, I was very involved with displays of turbulent fields
in physical space, and I have proposed a normalization for their representa-
tions in order to compare results obtained by numerical simulations and by
laboratory experiments which was essentially done in morphological terms
(Farge, 1987), (Farge, 1990a). Just before Alex Grossman first spoke to
me about wavelets in 1984, I had envisioned making bandpass filters in
two-dimensional Fourier space and then reconstructing the filtered field in
physical space, spectral band by spectral band, so as to match up certain
interactions observed in physical space with the turbulence cascades pre-
dicted by the statistical theory in Fourier space. This method, however, ran
into problems because of the Gibbs phenomenon, which occurs in physical
space when the frequency filtering is too abrupt. The wavelet transform
now allows us to analyze two-dimensional turbulence in a much more satis-
factory way, and it provides us with new mathematical tools for analyzing
the local regularity of a function (Holschneider and Tchamitchian, 1988),
(Jaffard, 1989). In an earlier paper (Farge and Rabreau, 1988), we carried
out one-dimensional wavelet transforms, using Morlet’s wavelet, of sections
of several vorticity fields numerically computed (Farge, 1988). This showed
how, during the flow evolution, starting from an initial random distribution
of vorticity, the smallest scales of the flow become more and more localized
and concentrated in the centers of coherent structures (Figure 6). We have
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subsequently confirmed this result using a two-dimensional Morlet wavelet
(Farge, Holschneider and Colonna, 1990) (Figure 7). The smallest scales
of the flow are localized in the coherent structures cores and are excited
when the latter are deformed by interactions with other nearby structures;
this led us to conjecture that, contrary to generally accepted ideas, dis-
sipation also acts in the center of coherent structures. This is confirmed
when one visualizes the vorticity Laplacian field which corresponds to the
dissipation term; the maxima of the dissipation are well localized in the
cores of the coherent structures (Farge, Holschneider and Colonna, 1990).
Moreover, some enstrophy dissipation is necessary inside two same-sign
coherent structures which are strongly interacting in order that they ul-
timately merge, which corroborates our hypothesis. (See color plate for
Figure 7)

2.2. INTERPRETATION

Now we will present a new model (Farge, 1990c), (Farge and Holschneider,
1990), (Farge, Holschneider and Philipovitch, 1991) in which we relate the
energy spectrum of two-dimensional turbulent flows to the presence of cusp-
like, or quasi-singular, coherent structures. This model was suggested by
our previous wavelet analysis of two-dimensional turbulent fields.

Consider the immediate neighborhood of a coherent structure which, by
definition, is a quasi-stationary solution of Euler’s equation

{Bw/at + J(¢,w) = 0}

w = V2 (24)

where w denotes the vorticity and ¢ the stream function, and suppose
that locally, in a domain as small as one wishes, this solution is axially
symmetric, i.e.

wn~re with a€R (25)

where r denotes the distance to the center of the coherent structure. Then
one infers the following scaling laws:

for the circulation

F(T) = 27?/ W(T/) 7'/ d‘T’l ~ ’I“a_%_?’ (26)
0
for the energy
e(r) =27 /0 V(r' )4 dr' ~ et (27)
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and for the enstrophy
-
Qr) = 27r/ w(r' ' dr' ~ r2et2, (28)
0
In order that these three invariants remain finite, we must have

a>-1. (29)

A coherent structure is characterized by a pointwise relation between the
vorticity and the stream function, called the coherent structure function,
for which we predict:

w ~ (3 — o) 32 (30)
where 9 is the value of the stream function at the core of the coher-
ent structure. Finally, calculating the energy in Fourier space and using
Plancherel’s identity, we obtain the spectral distribution of energy inte-

grated over the crowns |k| = constant, which should scale according to a
power law of the form

E(k) ~ k=275, (31)

Relying on the results of numerical experiments (Benzi et al, 1987), we
identify the coefficient & = —1/2, value which guarantees that the cir-
culation (26), energy (27), and enstrophy (28) all remain finite. In the
neighborhood of the coherent structures, we then have the following scal-

ing laws
w(r) ~ 7712, (32)
w(t) ~ (1 — o) ~1/3, (33)
E(k) ~ k™. (34)

Equation (32) corresponds to a singular axially symmetric vortex distri-
bution in the center of the coherent structures. We have proven (Farge,
Holschneider and Philipovitch, 1991) that such cusp-like structures are sta-
ble under the flow dynamics, even if they are perturbed by a strong noise.
A singular distribution of vorticity in the core of the coherent structures
is not a contradiction to the existing theorems (Wolibner, 1933), (Holder,
1933), (Cottet, 1987) for Euler equation in two dimensions, which predict
that in a bounded domain this equation conserves regularity (at least C1*¢)
and the boundedness (L>°) of the initial conditions. In fact, we can consider
another case where initially one has functions with a finite energy (L1~¢)

i e i o I e T R L SR SR R o T R T IR R PO PRSP

vorticity (4), if one has initial singular points (w(zo,y0) = oo at t = 0)

.
H
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then these initial singularities are advected by the flow, but are conserved
for all times (w(zo,yo) = 00 as t — o0).

Equation (33) seems confirmed by laboratory experiments of turbulent
flow in mercury, where the dynamics is constrained to two dimensions by
the presence of a magnetic field (Nguyen Duc and Sommeria, 1988). In
such a flow one observes, either a linear coherent structure function, or a
cusp-like one very similar in form to (33); this is achieved without modi-
fying the experimental parameters, quite apart from the initial conditions
which are never completely reproducible. Our theory permits us to pro-
pose the following interpretation of these results: the nature of the coherent
structures, characterized by their coherent structure function (30), depends
on the initial conditions. If these are regular, then the coherence structure
function is linear and the distribution of the vorticity is regular with a
constant vorticity in the center such that

W~ P ~ g for o = 00, (35)

but if the initial distribution has singularities, the flow organizes itself
around them and one obtains

W ~ 2/}"1/ 3 (36)
corresponding to cusp-like coherent structures of the form
w e~ 2 (37)

with a smoothing of the vorticity in the cores of the vortices caused by
dissipation due to viscosity. Contrary to the remark we made previously in
Section 1.1, which implied that the nature of the solution to the Navier—
Stokes equation may change in the limit v — 0 because this singular limit
affects the highest order terms of the equation, we are led to the following
conjecture: at large scales the singular solutions to Euler’s equation dom-
inate, whereas at very small scales, on the order of V/v, they are locally
smoothed by dissipation, and become what we call “quasi-singularities”
(Farge and Holschneider, 1990).

Such cusp-like coherent structures are observed by visualizing the vor-
ticity field of two-dimensional turbulent flows, where we see very spiky
vortex cores (cf. Figures 4c and 4d). Recently Benzi and Vergassola, by
performing a wavelet analysis of numerically computed two-dimensional ho-
mogeneous turbulent flows (Benzi and Vergassola, 1990), have confirmed
the existance of coherent structures having negative scaling exponents be-
tween —0.4 and —0.6, close to the value of —0.5 that we have predicted.

Uur theory also suggests a new interpretation of the energy spectrum ot
two-dimensional turbulent flows in purely geometrical terms, reminiscent
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of Saffman’s interpretation (Saffman, 1971), and quite different from the
statistical arguments currently applied to the problem. Thus, according to
equation (34), a flow with many coherent structures will have a spectral
energy distribution varying as k=% if it has at least one isolated coher-
ent structure with a quasi-singularity in 7~1/2, up to the dissipative scales
where viscosity will smooth the vortex core. Indeed, the spectral slope is
determined by the strongest isolated singularity present in the flow. This
slope in k™% is steeper than the slope in k=3 predicted by the statisti-
cal theory of two-dimensional turbulence (Kraichnan, 1967), (Batchelor,
1969), but agrees well with the slopes obtained from most of the numeri-
cal experiments of two-dimensional turbulent flows (Basdevant et al, 1981),
(McWilliams, 1984), (Farge and Sadourny, 1989). In fact, for these numeri-
cal experiments one chooses initial energy spectrum presenting a power-law
behavior up to the cut-off scale (Figure 3a), which corresponds to quasi-
singular vorticity distributions in physical space (Farge and Holschneider,
1990). The only numerical simulations which obtain k3 energy spectrum
(Brachet et al, 1988) are actually initialized with a band-limited spectrum
with no energy in the small scales, which corresponds to a smooth vorticity
field; in these experiments one does not observe the emergence of isolated
coherent structures. If this sensitivity to initial conditions of Euler and
Navier-Stokes equations in two dimensions is confirmed, we will have to
reconsider the hypothesis of a universal behaviour of turbulence (i.e. in-
dependent of the flow initial conditions). Perhaps universality isn’t where
we think it is; perhaps we should, instead, search for it in the shape of the
coherent structures and in their elementary interactions.

2.3. PERSPECTIVES

Applications of the wavelet transform to the theory of turbulence presently
follows three directions: analysis, filtering, and numerical integration of
turbulent flows. Concerning analysis, the wavelet transform offers the pos-
sibility of observing the flow from both sides of the Fourier transform at
once (up to the limit of the uncertainty principle); this gives us a method
for relating the dynamics of coherent structures in physical space to the
redistribution of energy among the various Fourier modes. The wavelet
transform is a particularly ideal tool for studying intermittency, one of the
major unsolved problems in the theory of turbulence today (Frisch and
Orszag, 1990). Indeed, the statistical theory of Kolmogorov (Kolmogorov,
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physical space, as would be true, for example, for a Gaussian distribu-
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tion of velocities. But several laboratory results (Batchelor and Townsend,
1949), (Anselmet, Gagne, Hopfinger and Antonia, 1984) seem to violate
this hypothesis. Likewise, in two dimensions, we interpret the fact that the
numerical results give steeper spectral slopes (of the order of k~*) than the
predictions of the statistical theory (k=3) in terms of an intermittency of
the enstrophy transfers: the spatial support of enstrophy transfers would
not be dense, but would diminish with scale until reaching the dissipative
scales, where dissipation would only act on a very small sub-domain of
physical space. Many theoretical models, all based on ad hoc probabilistic
considerations, have been proposed to explain intermittency (Kolmogorov,
1961), (Mandelbrot, 1976), (Frisch, Sulem and Nelkin 1978), (Parisi and
Frisch, 1985). The theory we have proposed to interpret our results (cf.
Section 2.2), deduced from our wavelet analysis of coherent structures (cf.
Section 2.1), allows a purely geometrical interpretation of intermittency: it
may be related to the cusp-like shape of some very excited axisymmetric
coherent structures whose spatial support would decrease with scale fol-
lowing a power-law behavior until the dissipative scales are reached; this
would only represent a very small subdomain in physical space, correspond-
ing to the cores of the coherent structures where vorticity would be locally
smoothed by dissipation. Recently, by applying the wavelet transform to
analyze three-dimensional flows, we have also found some very strong in-
termittency that we have related to the presence of coherent structures;
this led us to a similar geometrical interpretation of intermittency in three
dimensions (Farge, Guezennec, Ho and Méneveau, 1990).

The second direction in which the wavelet transform could play an im-
portant role in turbulence is the possibility of extracting coherent sructures
from the rest of the flow by filtering the wavelet coefficients. In effect, this
would allow us to test our conjecture (cf. Section 1.5) that the dynamics of
a turbulent two-dimensional flow may be essentially dominated by nonlin-
ear interactions among the coherent structures, the rest of the flow being
only passively advected by them. Thanks to Bruno Torrésani, Pierre Jean
Ponenti (Centre de Physique Théorique du CNRS-Luminy) and Richard
Kronland-Martinet (Laboratoire de Mécanique et Acoustique du CNRS-
Marseille), we have tried a technique (described in the chapter of this book
by Tchamitchian and Torrésani) to extract the skeleton of the wavelet co-
efficients of the vorticity field. This method, which has given interesting
results for phase stationary signals (Escudié and Torrésani, 1989), doesn’t
let us easily separate coherent structures from the rest of the flow. However,
the skeleton allows us to delimit the influence cones associated with the co-
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these influence cones, we may be able to use an inverse wavelet transform
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to reconstruct new vorticity fields, whose background flow would have been
filtered out so that only the coherent structures remain. Another, and quite
similar, approach, we are presently trying with Victor Wickerhauser from
Yale University, is to perform wavelet packet decomposition of the vorticity
field and only retain the wavelet packet coefficients which are attached to
coherent structures before reconstructing the filtered vorticity field. We
then plan to perform comparative numerical simulations of both filtered
and unfiltered flows. If the dynamics of the original and filtered vorticity
fields are similar, then our conjecture will have been verified.

Finally, from the point of view of numerical analysis, if our conjecture is
verified, one could then hope to reduce the number of degrees of freedom
required to numerically integrate the evolution of turbulent flows. Thus, if
one defines the degrees of freedom using Fourier modes, their number varies
as (Re)®/* in three dimensions or (Re)! in two dimensions, where Re is the
Reynolds number of the flow being calculated. If it could be proved that
coherent structures are the dynamically active part of the flow, it would
then be sufficient to consider only the degrees of freedom associated with
them, that we could express, for example, using orthogonal wavelets or
wavelet packets. This would allow us to design new algorithms, variants
of the Large Eddy Simulation technique (Ferziger, 1981), based not on the
traditional separation between resolved small Fourier wave numbers and
parametrized large Fourier wave numbers, but rather on a more physical
separation between the wavelet coefficients attached to coherent structures,
which would be computed explicitly, and the remaining wavelet coefficients
which would be only parametrized globally to take into account their energy
and enstrophy but not their phases.
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