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Abstract. We propose to use new orthonormal wavelet packet bases, more efficient than the Fourier basis, to
compress two-dimensional turbulent flows. We define the “best basis” of wavelet packets as the one which, for
a given enstrophy density, condenses the L? norm into a minimum number of non-negligible wavelet packet
coefficients. Coefficients below a threshold are discarded, reducing the number of degrees of freedom. We
then compare the predictability of the original flow evolution with several such reductions, varying the number
of retained coefficients, either from a Fourier basis, or from the best-basis of wavelet packets. We show that
for a compression ratio of 1/2, we still have a deterministic predictability using the wavelet packet best-basis,
while it is lost when using the Fourier basis. Likewise, for compression ratios of 1,/20 and 1,/200 we still have
statistical predictability using the wavelet packet best-basis, while it is lost when using the Fourier basis. In
fact, the significant wavelet packet coefficients in the best-basis appear to correspond to coherent structures.
The weak coefficients correspond to vorticity filaments, which are only passively advected by the coherent
structures. In conclusion, the wavelet packet best-basis seems to distinguish the low-dimensional dynamically
active part of the flow from the high-dimensional passive components. It gives us some hope of drastically
reducing the number of degrees of freedom necessary to the computation of two-dimensional turbulent flows.

1. Introduction

Fully developed turbulence is commonly viewed from one of two alternative perspectives,
one on either side of the Fourier transform. In physical space, we observe well localized
coherent structures. We may wonder if there is universality in their shapes and elementary
interactions. In Fourier space, we see transfers of energy and enstrophy between different
wavenumbers. We may ask, for example, if the slope of the energy spectrum is universal,
namely independent of the initial and boundary conditions, after sufficient time. Time already
introduces a great simplification, since vastly different flows can have the same energy
spectrum. If we now want to reconcile the physical with the Fourier space perspective, we
have to define new orthonormal bases to decompose two-dimensional turbulent flows. We
may define bases made up of atoms, which are smooth functions well localized in both
physical and Fourier space. These basis elements are well localized in phase space, namely in
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both space and wavenumber coordinates. A coherent structure, which is characterized by
both a location and a shape, can be seen to be a superposition of those phase space atoms in
what may be described as molecules.

Numerical experiments which produce dynamically stable turbulent flows result in vorticity
fields which may be described as coherent structures separated by vorticity filaments. The
coherent structures retain their shape for long periods of time and contain large amounts of
enstrophy. The vorticity filaments, on the other hand, correspond to the weakest enstrophy
regions. They are passively advected by the coherent structures and dissipated. We conjecture
that such flows can be segmented into “strong” components corresponding to the coherent
structures and “weak” components or filaments and that only the “‘strong” components need
be retained to accurately approximate the flow.

How coherent structures form, which is still an open problem, may be approached as the
condensation of atoms into molecules. The flow is segmented into such atoms; it may be
analyzed at each instant, and the evolution of coherent structures may be followed by tracking
these molecules. In fact, projection onto a limited number of molecules results in a reduction
in the dimension of the problem. We can now test whether this reduction is meaningful
relative to the dynamics of the flow.

To numerically integrate the time evolution of turbulent flows, we are presently using two
kinds of orthonormal basis, either one that is well localized in space (finite differences, finite
elements, or vortex methods), or one that is well localized in wavenumber (spectral methods).
If the appropriate model for a turbulent flow is point vortices, then the first type of basis is
better suited; if it is a superposition of waves, then the Fourier basis is preferable. In general,
turbulent flows are not as simple as these two limit cases. We have to develop a mixed
approach for the intermediate cases; therefore, we have to look for new bases. Phase space
atoms provide a very flexible choice.

A particular library of phase space atoms is the wavelet packets, which include grid points,
wavelets, and analogs of Fourier and windowed Fourier basis elements. Wavelet packets have
the advantage of remarkable orthogonality properties. Very many combinations of wavelet
packets yield orthonormal bases. We then select that orthonormal basis which best condenses
the enstrophy onto a minimal number of nonnegligible coefficients. This minimal number
happens to be a reasonable candidate for he theoretical dimension of the attractor, or the
expected number of degrees of freedom among the coherent structures.

2. Decaying two-dimensional turbulent flow

The whole approach is “numerically experimental”. It uses high-resolution direct numeri-
cal simulations of decaying two-dimensional turbulent flows, performed with a standard
pseudospectral Galerkin method. We try to define more appropriate orthonormal bases, i.e.,
more economical in terms of degrees of freedom. This is one way to reduce the computational
cost of integrating the flow evolution.

The Navier—Stokes equations describe the dynamics of a two-dimensional incompressible
viscous flow. In the periodic plane S = (0, 2) X (0, 27) € R? and in the absence of external
forcing, these take the following form:

/ot + (u-V)u+VP—vV2u=0, inSxR*,
Vou=0, in S X R¥,
u(x,0)=uy(x), in S. (2.1)
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We also impose periodic boundary conditions. Here u is the velocity field, P is the pressure
field, and v is the kinematic viscosity. We can rewrite these equations in terms of vorticity:

w = du,/dx, — du, /3x,, ’ (2.2)
and streamfunction ¢ defined such that:
_(w) _ (/o
u_(uz)_(8¢/6x1 . (2.3)

The Navier—Stokes equations then become:
dw/dt +J(¢, ) —vV?w =0, inSXR",
w="V2, inSXR*,
w(x,0)=wy(x), in§, (2.4)

again with periodic boundary conditions, and where the Jacobian operator is:
J(¢, w)=7—————— (2.5)

The initial vorticity field wy(x) is a fully developed turbulent flow, previously computed with
some external forcing, which has reached a statistically steady state. The same integration is
then performed without forcing. We can expand o and ¢ in their Fourier series over the
periodic domain S:

o(x,t)= Y. &(k,t)exp(ik-x), (2.6)
kez?
where
1
o(k,t)= 5—;/ sz(x’ t) exp(—ik - x) dx,
and
b(x,t)=Y B(k,t) exp(ik - x), (2.7
kez?
where

) 1
bk, 1) = E]xewlp(x, t) exp(—ik - x) dx.

To integrate the Navier—Stokes equations we use a pseudospectral Galerkin method which
consists in truncating the trigonometric expansion of the different variables to the first
Fourier modes, lying in the range 0 < | k| <k,, where k, is the cutoff wavenumber which
gives some fixed resolution. The time integration is done using an Adams—Bashforth scheme.
The periodic plane S is sampled on 1282 grid points in our simulation. For the subgrid scale
model we use a hyperdissipation operator —(— V?)*, which replaces the Laplacian operator
in the Navier—Stokes equations.

We conjecture that coherent structures appearing in the vorticity field w are superpositions
of elements well localized in both position and wavenumber. We shall call the individual
elements atoms, while their superpositions into coherent structures may be called molecules.
It is possible to identify the atoms in a molecule: they are co-localized with it, and they are
orthogonal to each other. The number of atoms in a molecule corresponds approximately to
the number of degrees of freedom of the coherent structure.
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3. Linear Fourier rank reduction

The “linear Fourier” rank reduction method consists of picking a wavenumber cutoff
k.<k, and setting to zero all components which lie outside that cutoff. This further
band-limits the signal. The “rank-reduced” vorticity and streamfunction are thus

w(x,t)y= Y  &(k,t)exp(ik-x), (3.1)
kez?
O<|k| <k,

ve(x, )= Y d(k,t) exp(ik-x). (3.2)
kez?
0<|k| <k,
The value of k_ is chosen such that the total number of lattice points inside a circle of radius
k. is the desired fraction of the original rank of the problem.

Truncation to the lowest wavenumbers is the traditional method of reducing the number of
degrees of freedom in a computational turbulence problem. This method makes the assump-
tion that the two-dimensional spectrum is vanishingly small at the cutoff wavenumbers, which
is not true in general. If we truncate at a wavenumber where the spectrum contains significant
energy, the method introduces artifacts. A “nonlinear” alternative to this truncation would be
to first sort all Fourier components in decreasing order of absolute value, and then retain only
the first few or largest modes. This method chooses coefficients independently of wavenum-
ber. It cuts out only that part of the two-dimensional spectrum which contains very little
energy, and therefore introduces far less significant artifacts. While this nonlinear approach
to Fourier rank reduction looks promising, it is not well suited to the present pseudospectral
integration methods. Their computational cost is dominated by the fast Fourier transform,
which itself is controlled by the spectral bandwidth. In general, the spectral bandwidth of the
nonlinear Fourier rank reduction is the same as that of the original.

4. Wavelet packets

def
Suppose f is a square-integrable function with || f || = (Jr| f(OI 2dx)/?2=1. Let & be
any collection of complete orthonormal bases for such functions. We may call % a library of
bases. Now define the dimension of f in basis B as:

dy=exp( = T 1F, 8917 1og 11, 0)1%),
beB

where each b is one vector in the orthonormal basis B. Roughly speaking, this expression

measures how many non-negligible coefficients are present in the expansion of f in basis B.

The theoretical dimension of f in the library % is the minimum value of dg, taken over all the

orthonormal bases in the library . In the context of turbulent flow dynamics, the theoretical

dimension may be related to the dimension of the inertial manifold [10,5].

Wavelet packets are generalizations of the compactly supported wavelets introduced by
Daubechies [4], Mallat [6], and Meyer [7]. They constitute an overabundant set of basis
functions with remarkable orthogonality properties, such that very many subsets form or-
thonormal bases; thus they form a library in the above sense. The one-dimensional case is
described in refs. [2,3]. Each basis element is characterized by three attributes: position p,
scale s, and wavenumber k. We shall shortly describe one of these elements ¢, ., which will
be a square-integrable function of prescribed smoothness, located in the vicinity of x = p, and
with approximately k oscillations or zero-crossings. Such a function is well localized in both
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position and wavenumber, at the point ( p, k) of phase space. By the Heisenberg uncertainty
principle, it is not possible to localize a function to arbitrary precision in both p and k; we
must have 8p - 8k > 1 in normalized units, where 8p is the uncertainty in position and 3k is
the uncertainty in wavenumber. In our construction, we have 8p =2° and 8k =27° in the
same normalization, so that the product of the uncertainties is roughly as small as possible.
Such functions #, ; ,, which cannot be significantly better localized in phase space, are what
we shall call atoms.

Fourier analysis with such waveforms or atoms consists of calculating the “wavelet packet
transform” w,  ,(f)=(f, ¥, .. Certain subsets of the indices (p, s, k) give orthonormal
bases B and for these subsets we have the inversion formula:

f= Z <f’ d/p,s,k>¢p,s,k' (41)

(p,s,k)eB

Wavelet packets are rarely constructed explicitly. More usually, we simply apply the
following fast discrete algorithm (described in refs. [2,3]) to the sampled values of f, and
thereby produce the coefficients w, . (f).

We introduce two (short) finite sequences {#,} and {g,}, called “quadrature mirror filters”,
which satisfy the relations:

Zh2n22h2n+l=%\/§’ gn:(_l)nhl—n’ V}’l,

B _J1 iftm=0,
%:hnhn+2m_zg”g”"’2m {0 otherwise,

n

Yh,gom=0, YmeZ. (4.2)

Consider for simplicity the one-dimensional case. Let ¢ = ¢(x) be any solution to the
fixed-point equation

d(x) =V2 YL h;d(2x +j).
j
Starting with a signal f, we compute w, ,,(f) recursively from a resolution L as follows:
Woool£) = [ F(x)é(2"x —n) dux,
R
Wosc126(f) = Zh2n+jwj,s.k(f)’
J

Wn,s+1,2k+l(f) = Zg2n+jwj,s,k(f')'
J

Observe that this defines all the coefficients w,  ,(f) for s >0, p€ Z, and 0 <k <2°. The
index k is a frequency parameter, and is limited in its range by the Nyquist theorem: we
cannot detect more than N /2 frequencies in an N-point time series. For the experiments in
this article, we used the so-called “C6” coefficients, with /4, given below:

ho=0.038580777747886749, h, = —0.126969125396205200,
h, = —0.077161555495773498, h;= —0.607491641385684120,

h, =0.745687558934434280, hs = 0.226584265197068560, (4.3)

and h, = 0 for all values of n outside [0, 5]; then we determine g, from (4.2).
We claim now (and it is shown in refs. [2,3,11] that there are underlying functions ¥,
and that the recursive computation of w, ¢ «(f) is equivalent to calculating inner products of f
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with these functions. We also avoid the initial inner product with ¢ by using the approxima-
tion w, oo = f(n27%), which for smooth f and ¢ converges rapidly to the correct value as
L — o,

The underlying functions ¢ are built up in two steps. We first define a family of functions
recursively for integers £ > 0 by

Wo(x) =vV2 Y h,W,(2x —n), (4.4)
W2k+1(x) = ‘/2- Zgan(Zx —n). (4.5)

Note that W, satisfies the same fixed-point equation as ¢. If we impose [¢ =1, then
conditions (4.2) ensure that a unique solution to this fixed-point problem exists, and the
quadrature mirror filters can be chosen (see ref. [4]) so that the solution has a prescribed
degree of smoothness. Equations (4.2), (4.4), and (4.5) all have periodic analogs, which we use
in the case of periodic boundary conditions.

One-dimensional wavelet packets are defined from these W, by the formula

Upsi = 252W,(2° - p). (4.6)

Our library of basis functions in two dimensions consisted of the tensor products of the
functions. Let I be a dyadic square 2Tk, k, + 11X 27k, k,+ 1] and put ¢, , , (x, y)=
2°W, 2°x — px)ka(ZSy —p,). Then every basis in our library, for functions on the 2% x 2%
grid, corresponds to a set of the form:

les, p.eZ, p,e€Z,0<p <25 0<p, <257, 4.7
I(p,.py) X y x y

where .7 is a disjoint cover of the unit square by such dyadic squares I, for s >0 and
0<k, k, < 2~1 Computation of inner products with all ¢, is performed recursively, as is
the search for the best-basis; this two-dimensional version of the algorithm in refs. [2,3] is
detailed in ref. [11]. The entire procedure has complexity O(N log N) where N is the rank of
the problem, and N = 225 for the original grid-point formulation.

The “best-basis of wavelet packets” rank reduction method consists of minimizing the
theoretical dimension d of our initial vorticity field over such bases. Call the optimal basis
B, . We then project onto the top few coefficients as below:

wc = Z C1¢’1 ’
I€B,
eyl >e
where ¢; = {w, ;) and € is some predetermined threshold, and we also sum over all integer
translates (p,, p,), even though that notation is suppressed for compactness.

After projection onto the largest wavelet packet coefficients, what remains is expected to
contain the remaining degrees of freedom of the entire system, whose theoretical dimension
should be much greater than that of retained coefficients, which themselves should have the
theoretical dimension of the approximate inertial manifold.

5. Numerical experiments

In all experiments we begin with an initial condition consisting of a fully developed
two-dimensional turbulent flow samples on 1282 grid points. This gives us a “reference initial
flow field” (fig. 1a). We then integrate the evolution equation for an additional 6000 time
steps between ¢ = 0.0 and ¢ = 0.6, using the numerical model defined in the previous section.
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Fig. 1. Reference solution. (a) Vorticity field at 1 =0, (b) vorticity field at ¢ = 0.6, (c) energy spectrum at ¢ =0, (d)
energy spectrum at ¢ = 0.6, (e) evolution of enstrophy, (f) evolution of theoretical dimension. In all the following
colour plates, the same colour scale, depicted in (a) and (b) is used.

In our normalization, this interval is approximately 30 eddy turnover times, or the time it
takes for an average vortex to make 30 rotations. The resulting evolution will be called the
“reference flow field evolution”. In fig. 1 may be seen the vorticity fields at ¢ = 0.0 (fig. 1a)
and r=0.6 (fig. 1b), as well as the power spectra of the initial (fig. 1c) and final (fig. 1d)
vorticity fields, and the evolution of enstrophy (fig. 1e) and theoretical dimension (fig. 1f).
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We then repeat the simulation using “rank-reduced initial flow fields”, which are low-rank
projections of the reference initial flow field. Rank reduction is obtained by expanding the
initial state over an orthonormal basis, and then keeping only a fraction of the coefficients,
the “strong” components. This was done in two ways:

(1) “Linear Fourier”, which retains that fraction of the Fourier components at lowest
strongest wavenumbers between k =0 and a given cutoff & = k. This is a linear projection
onto a lower-rank subspace.

(2) “Best-basis of wavelet packets”, which retains a fixed fraction of the strongest coeffi-
cients in the wavelet packets basis chosen by the best-basis algorithm. Both the best basis
algorithm and the subsequent choice of coefficients depends in a nonlinear way on the field.

After rank reduction, we reconstruct the original 1282 grid point parameters. We then
compute the evolution from the rank-reduced initial flow field to obtain the “rank-reduced
flow field evolution”. Both of these computations are performed using the same pseudospec-
tral code as the reference, for the same duration of 6000 time steps. We also evolve the initial
flow field consisting of the “weak” components discarded by rank reduction.

We expect the retained or “strong” components to be a good approximation to the
reference flow, but we are concerned that some vital dynamical features might be discarded
with the “weak” components. Our rank reduction goes too far if the discarded components
contain coherent structures, or features which evolve on short time scales. The “weak”
components affect the original flow in rough proportion to the fraction of the total enstrophy
they contain, but the real extent of their contribution depends upon whether they resemble
homogeneous noise or weakened coherent structures. The less the discarded components
behave like the reference flow, the more confidence we have in the faithfulness of the
approximation by the “strong” components.

For each method we consider three compression ratios: 2, 20, and 200. Here, the
compression ratio is defined to be the reciprocal of the fraction of coefficients retained, which
are 50%, 5% and 0.5%. We compute the evolution of both the “strong” components (those
retained), and the “weak” components (those discarded or filtered out). We present initial
and final vorticity fields for the two sets of components, and we also plot their initial and final
energy spectra. Finally, we compute the evolution of enstrophy and theoretical dimension
from both the weak and strong rank-reduced initial flow fields, to get weak and strong
rank-reduced flow field evolutions. For the theoretical dimension evolution, we compute a
value only every 20th time step, for a total of 300 values.

The evolution of the flow field does not conserve energy, but energy is a useful measure of
the division introduced by the rank-reduction. We tabulate the initial and final energy of the
13 evolutions in table 1. The decomposition of the initial flow field into “strong” and “weak”
wavelet packet components conserves enstrophy but not necessarily energy. In fact, the
deviation from energy conservation indicates whether dynamically important components
have been discarded. This is very noticeable in the 0.5-99.5% decomposition into wavelet
packets. However, the linear decomposition of the initial flow field into Fourier modes does
conserve energy at that time slice, though the evolutions thenceforth separate so the sum of
the energies of the evolving pieces departs from the energy in the reference.

5.1. Linear Fourier rank reduction

5.1.1. “Strong” coefficients
We describe first the results for linear Fourier rank reduction. When 50% of the

coefficients are retained (compression ratio 2), the resulting rank-reduced initial vorticity field
is virtually identical to the reference (compare fig. 1a and fig. 2b). Likewise, the energy
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Table 1

Initial and final energy of the flow-field evolutions.

Flow field Energy (initial — final)
reference 49.53 - 48.48
50% strongest wavelet packets 49.52 — 48.46
5% strongest wavelet packets 47.12 - 46.37
0.5% strongest wavelet packets 43.97 - 43.72
50% lowest-wavenumber Fourier modes 49.47 — 48.52
5% lowest-wavenumber Fourier modes 44.64 - 43.99
0.5% lowest-wavenumber Fourier modes 6.06 — 6.06
50% weakest wavelet packets 0.0009 — 0.0005
95% weakest wavelet packets 1.72 - 1.52
99.5% weakest wavelet packets 24,70 — 23.95
50% highest-wavenumber Fourier modes 0.06 — 0.00
95% highest-wavenumber Fourier modes 4.90 - 4.16
99.5% highest-wavenumber Fourier modes 43.47 — 42.55

spectra are nearly identical (compare fig. 1c and fig. 4b). The evolution is statistically similar
to the reference, but deterministically slightly different (compare the final fields in fig. 1b and
fig. 6b, and the final spectra in fig. 1c and fig. 8b). Notice that in the center bottom of fig. 6b,
there are two distinct red vortices which in the reference flow (fig. 1b) have merged, forever
separating the two histories. The other differences, which are minor in terms of dynamics,
are caused by the phase shift due to the enstrophy lost during rank reduction. The enstrophy
and theoretical dimension both decrease slowly and very much like the reference (compare
fig. 1e and fig. 10b and also 1f and 12b).

When 5% of the Fourier coefficients are retained (compression ratio 20), there is some
noticeable distortion in both the vorticity field and the energy spectrum (compare fig. 1a and
fig. 2d, and fig. 1c and fig. 4d). The evolution is deterministically quite different, and also
statistically different (compare the final fields in fig. 1b and fig. 6d, and the final spectra in fig.
1d and fig. 8d). What is more, the enstrophy changes in a rather different manner (compare
fig. 1e and fig. 10d). Finally, the theoretical dimension is greatly reduced by the rank
reduction, and only after time ¢ = 0.1 or so does it recover the dimension of the reference
(compare fig. 1f and fig. 12d).

These distortions are even more pronounced when only 0.5% of the Fourier coefficients
are retained (compression ratio 200). The rank-reduced initial field bears little resemblance to
the reference (compare fig. 1la with fig. 2f). Only those components with the very lowest
wavenumbers survive such drastic filtering, and the resulting field is much smoother than the
reference. Of course the truncation in wavenumber has the expected effect on the energy
spectrum (compare fig. 1c and fig. 4f). There are significant differences between the final
vorticity fields and energy spectra of the reference and the rank-reduced evolution; the results
bear little deterministic or statistical resemblance to the reference solution (compare the final
field in fig. 1b with fig. 6f, and the final spectra in fig. 1d and fig. 8f). In particular the spectral
slope in the inertial region is very different. The enstrophy of the rank-reduced field evolves
quite differently from that of the reference (compare fig. le to fig. 10f), starting at a much
lower level but decreasing much less, indicating that most of the dissipation occurs among the
neglected terms. The theoretical dimension evolved very differently, even increasing while
that of the reference is decreasing (compare fig. 1f to fig. 12f). Clearly the discarded terms
contain dynamically important flow components.
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Fig. 2. Vorticity fields: “strong” components at ¢ =0. (a) Wavelet packet: 50% strongest, (b) linear Fourier:

lowest-wavenumber 50%, (c) wavelet packet: 5% strongest, (d) linear Fourier: lowest-wavenumber 5%, (e) wavelet
packet: 0.5% strongest, (f) linear Fourier: lowest-wavenumber (0,5%.
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5.1.2. “Weak” coefficients

Second, we repeated the simulation, but this time retaining only the terms which were
rejected previously. For linear Fourier, this means those components with wavenumber above
the cutoff k =k . Whether we started with the outer 50%, 95%, or 99.5% of the “weak”
Fourier components, the rank-reduced initial vorticity field contains some nonnegligible
enstrophy (see figs. 11b, d, f). That these fields (figs. 3b, d, ) contribute to the flow dynamics
is seen in the final frames (figs. 7b, d, ), which have all evolved away from the initial fields.
Even at 50% rank reduction, there is a fast time-scale evolution between ¢ =0.2 and ¢t =0.3
(see fig. 13b). Likewise, the energy spectra of the 95% and 99.5% ““weak” components bear
quite a bit of resemblance to the spectra of the reference, particularly at the end of the
evolution (compare fig. 1d with figs. 9d, ). The spectrum of the 50% ‘“weak” components,
however, looks very much like white noise (see fig. 9b). The enstrophy of the 50% weak
components decays to zero by ¢t = 0.1 (see fig. 11b), but for the two other cases (see figs. 11d,
f) the enstrophy evolves quite similarly to that of the reference (fig. le), indicating the

10%F 10°F
1G5 10750
1610 10_10-
(a) (b}
10° 10! 102 10° 10! 102
(o]
10 /_/\\\
10°F
-5
- 10 "k
10 3}
109 10"
) (d)
10° 10’ 102 10° 10 102
10% 10%F
107 10°
15'% 107%
(e) (t)
109 10! 102 109 10! 102

Fig. 4. Energy spectra: strong components at ¢=0. (a) Wavelet packet: 50% strongest, (b) linear Fourier:
lowest-wavenumber 50%, (c) wavelet packet: 5% strongest, (d) linear Fourier: lowest-wavenumber 5%, (e) wavelet
packet: 0.5% strongest, (f) linear Fourier: lowest-wavenumber 0.5%.
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presence of some dynamics. Much the same is true of the evolution of the theoretical
dimension (figs. 13b, d, ), again indicating that significant interactions are taking place among
the discarded components.

5.2. Wavelet packet rank reduction

5.2.1. “Strong” components
Next we turn to the results of experiments in which the basis chosen by the wavelet packet

algorithm was employed for rank reduction. When the strongest 50% of the strong terms were
retained (compression ratio 2), the resulting vorticity field evolution was very similar to the
reference evolution. In particular, there is a single merged vortex at the center bottom of the
final vorticity field (fig. 6a) just as in the reference (fig. 1b). The energy spectra are identical
(compare fig. 1c and fig. 4a). The evolution from the rank-reduced field is both deterministi-
cally and statistically similar to that of the reference field (as seen by comparing the final

109
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Fig. 5. Energy spectra: “weak” components at ¢=0. (a) Wavelet packet: 50% weakest, (b) linear Fourier:
highest-wavenumber 50%, (c) wavelet packet: 95% weakest, (d) linear Fourier: highest-wavenumber 95%, (e) wavelet
packet: 99.5% weakest, (f) linear Fourier: highest-wavenumber 99.5%.
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Fig. 6. Vorticity fields: “strong” components at ¢ = 0,6. (a) Wavelet packet: 50% strongest, (b) linear Fourier:
lowest-wavenumber 50%, (c) wavelet packet: 5% strongest, (d) linear Fourier: lowest-wavenumber 5%, (e) wavelet
packet: 0.5% strongest, (f) linear Fourier: lowest-wavenumber 0.5%.
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Fig. 7. Vorticity fields: “weak” components at r=0,6. (a) wavelet packet: 509 weakest, (b) linear Fourier:
highest-wavenumber 50%, (c) wavelet packet: 95% weakest, (d) linear Fourier: highest-wavenumber 95%, (e) wavelet
packet: 99.5% weakest, (f) linear Fourier: highest-wavenumber 99.5%.
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vorticity field in fig. 1b to that in fig. 6a, and comparing the spectra in fig. 1d to that in fig. 8a).
Likewise, the enstrophy and theoretical dimension of both the rank-reduced and reference
fields evolve in very similar ways (compare fig. 1le with fig. 10a, and fig. 1f with fig. 12a).

When the strongest 5% of the wavelet packet coefficients were retained (compression ratio
20), the results were statistically well-predicted, but deterministically poor. The rank-reduced
initial field (fig. 2¢) and its energy spectrum (fig. 4c) closely resemble the reference (fig. 1a
and fig. 1c), but the final vorticity field exhibits significant differences (compare fig. 6¢c with
fig. 1b) even though the energy spectra are very similar (compare fig. 8¢ with fig. 1d). We also
observe that the enstrophy and theoretical dimension of the rank-reduced flow (fig. 10c and
fig. 12¢) are quite similar to the enstrophy and theoretical dimension of the reference (fig. le
and fig. 1f).

When only the strongest 0.5% of the wavelet packets were retained (giving a compression
ratio of 200), we found that the rank-reduced initial vorticity field differs markedly from the
reference solution (compare fig. 1a with fig. 2e). After reduction, there remain only approxi-
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Fig. 8. Energy spectra: “strong” components at ¢ =0.6. (a) Wavelet packet: 50% strongest, (b) linear Fourier:
lowest-wavenumber 50%, (c) wavelet packet: 5% strongest, (d) linear Fourier: lowest-wavenumber 5%, (e) wavelet
packet: 0.5% strongest, (f) linear Fourier: lowest-wavenumber 0.5%.
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mations to the coherent structures; in contrast to the linear Fourier reduction, the coherent
structures retain their original regularity and are not eroded by smoothing. However, the
vorticity filaments of the background have been removed. The rank-reduced vorticity field
remains statistically similar to the reference in the sense that the spectrum remains the same
(compare fig. 1c with fig. 4e). Furthermore, this statistical similarity is preserved by the
evolution (compare the final energy spectra in fig. 1d and fig. 8e), even though the appearance
of the final fields differ markedly (compare fig. 1b against fig. 6e). The enstrophy of the
reduced initial field evolves in a manner similar to the reference (compare fig. le and fig.
10e). The theoretical dimension also behaves in a manner similar to the reference (fig. 1f and
12e), in the sense that both are slowly decreasing on average, with fluctuations which might be
accounted for by vortex interactions. The theoretical dimension of the reduced flow field is
much lower than that of the reference, because of the drastic reduction in the rank of the
initial field.
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Fig. 9. Energy spectra: “weak” components at ¢=0.6. (a) Wavelet packet: 50% weakest, (b) linear Fourier:
highest-wavenumber 50%, (c) wavelet packet: 95% weakest, (d) linear Fourier: highest-wavenumber 95%, (e) wavelet
packet: 99.5% weakest, (f) linear Fourier: highest-wavenumber 99.5%.
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5.2.2. “Weak” components

Finally, we examine the evolution of the weakest wavelet packet components of the initial
flow. If we retain the weakest 50% (fig. 3a) of the wavelet packets, the flow very rapidly
dissipates the very smallest structures and after ¢ = 0.05 remains frozen (see the final field in
fig. 7a). The spectra at the start and at the end are nearly flat, and quite unlike the reference
spectra (compare fig. 5a with fig. lc, and fig. 9a with fig. 1d). Also, the enstrophy and
theoretical dimension first decrease very rapidly and then behave almost like constants (figs.
11a and 13a), indicating an absence of strong interactions. If we retain the weakest 95% (fig.
3c) of the wavelet packets, the flow also dissipates rapidly up to # = 0.05, and then moves very
slowly with feeble interactions (see the final field in fig. 7c). The spectra at the start and at the
end are all quite different from that of the reference (compare fig. Sc with fig. 1c, and fig. 9¢
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Fig. 10. Evolution of enstrophy: “strong” components. (a) Wavelet packet: 50% strongest, (b) linear Fourier:
lowest-wavenumber 50%, (c) wavelet packet: 5% strongest, (d) linear Fourier: lowest-wavenumber 5%, (e) wavelet
packet: 0.5% strongest, (f) linear Fourier: lowest-wavenumber 0.5%.
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with fig. 1d), though the spectral slope about —1 in the inertial region suggests white noise.
Again, the enstrophy and theoretical dimension behave much more like -constants after a
rapid initial decrease (figs. 11c and 13¢), indicating an absence of strong interactions. In the
third case (fig. 3e), in which the weakest 99.5% of the wavelet packets are retained, the flow is
slowly varying and exhibits occasional merging. The initial (fig. 5¢) and final spectra (fig. 9¢),
with spectral slope roughly —2 in the inertial region, bore some resemblance to those of the
reference (fig. 1c and fig. 1d), where the spectral slope is roughly —4. The enstrophy and
theoretical dimension also behave somewhat like the reference (compare fig. 11e with fig. le,
and fig. 13e with fig. 1f), indicating that the components discarded by such a drastic, 200-fold,
rank reduction do contribute somewhat to the dynamics.
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Fig. 11. Evolution of enstrophy: “weak” components. (a) wavelet packet: 50% weakest, (b) linear Fourier: highest-
wavenumber 50%, (c) wavelet packet: 95% weakest, (d) linear Fourier: highest-wavenumber 95%, (e) wavelet packet:
99.5% weakest, (f) linear Fourier: highest-wavenumber 99.5%.
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These results indicate that the wavelet packet algorithm is useful, not only for representing
the instantaneous flow efficiently, but also for identifying the dynamically. important flow
components. Those actually correspond to the coherent structures. Vorticity filaments can be
neglected because they are only slaved modes, produced by interactions among the coherent
structures and then passively advected by them. The connection between coherent structures
present in the vorticity field and the nonlinearities of the Navier—Stokes dynamics becomes
apparent when they are visualized together in physical space. In running a video movie of
their evolution (cf. remark on data below), one observes bursts of nonlinearities when
coherent structures strongly interact, such as same-sign vortex merging or opposite-sign vortex
binding. This observation suggests that, to improve predictability of the low-rank models of
two-dimensional turbulent flows, we should use bases which retain much of the local
information, like precise amplitudes and positions, attached to the coherent structures. By
contrast, the background flow of vorticity filaments may be neglected, or parametrized by an
ad hoc statistical model.

6. Conclusion

In conclusion, the predictability of a turbulent flow using a post hoc reduced-rank
approximation depends upon the choice of basis in which the rank reduction of the initial
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Fig. 12. Evolution of theoretical dimension: “strong” components. (a) Wavelet packet: 50% strongest, (b) linear
Fourier: lowest-wavenumber 50%, (c) wavelet packet: 5% strongest, (d) linear Fourier: lowest-wavenumber 5%, (e)
wavelet packet: 0.5% strongest, (f) linear Fourier: lowest-wavenumber 0.5%.
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state is performed. In the case of two-dimensional turbulent flows, we have compared linear
Fourier and top-few wavelet packet rank-reduction methods, and we have found wavelet
packets to be superior for various kinds of approximation. We have illustrated that keeping
the strongest best-basis wavelet packets retains the dynamically active features of coherent
structures. Linear Fourier rank reduction, on the other hand, smooths the coherent structures
and thereby removes dynamically vital features.

Using the best basis of wavelet packets, the reduction of the number of parameters
necessary to describe the dynamics is done without assuming any scale separation. This
contrasts with large-eddy simulation, or nonlinear slow manifold projection as used in weather
forecasting [8], or approximate inertial manifolds [10,5]. All of these other methods presently
assume Fourier scale separation in order to work, namely that high wavenumber modes are
slaved by low wavenumber modes.

There are two directions to follow in the future. The first one, let us call it the analytical
approach, is to examine a very large number of turbulent flows, both computed and
measured, in order to identify and classify those molecules or coherent states which are most
commonly encountered. The first approach has been explored with Karhunen-Loéve meth-
ods in the work of Aubry et al. [1] and Sirovich and Sirovich [9). Our methods are very similar
in spirit, only computationally more efficient (O(N log N) versus N?3). The other, let us call
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Fig. 13. Evolution of theoretical dimension: “weak” components. (a) Wavelet packet: 50% weakest, (b) linear
Fourier: highest-wavenumber 50%, (c) wavelet packet: 95% weakest, (d) linear Fourier: highest wavenumber 95%, (e)
wavelet packet: 99.5% weakest, (f) linear Fourier: highest-wavenumber 99.5%.
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it the synthetic approach, is to compute the evolution of flows from arbitrary initial distribu-
tions of phase space atoms, and then observe what types of molecules get formed. We shall
discuss the computation of flow field evolutions in terms of atomic parameters in a future

paper.

Data. The visualizations of the evolving vorticity fields and their various rank reductions
are available on VHS videotape, in PAL, SECAM, and NTSC formats, for US $25. To order,
contact CNRS Audiovisuel, Dept. Diffusion, 1 Place Aristide Briand, 92195 Meudon Cedex,
France, telephone (33)-1-45.07.56.86, fax (33)-1-45.07.59.00.
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