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INTRODUCTION

Wavelet transforms are recent mathematical techniques, based on group
theory and square integrable representations, which allows one to unfold
a signal, or a field, into both space and scale, and possibly directions. They
use analyzing functions, called wavelets, which are localized in space. The
scale decomposition is obtained by dilating or contracting the chosen
analyzing wavelet before convolving it with the signal. The limited spatial
support of wavelets is important because then the behavior of the signal
at infinity does not play any role. Therefore the wavelet analysis or syn-
thesis can be performed locally on the signal, as opposed to the Fourier
transform which is inherently nonlocal due to the space-filling nature of
the trigonometric functions. Wavelet transforms have been applied mostly
to signal processing, image coding, and numerical analysis, and they are
still evolving.

So far there are only two complete presentations of this topic, both
written in French, one for engineers (Gasquet & Witomski 1990) and the
other for mathematicians (Meyer 1990a), and two conference proceedings,
the first in English (Combes et al 1989), the second in French (Lemari6
1990a). In preparation are a textbook (Holschneider 1991), a course (Dau-
bechies 1991), three conference proceedings (Meyer & Paul 1991, Beylkin
et al 1991b, Farge et al 1991), and a special issue of IEEE Transactions
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on Information Theory (Daubechies et al 1991), which are all written 
English.

Therefore, I assume that the reader is not yet familiar with this topic
and give a general presentation of both the continuous wavelet transform
and the discrete wavelet transform, in a manner as complete and detailed
as possible, to provide the reader with the basic information with which
to start using these transforms. In this spirit I will discuss the choice of the
wavelet, which varies according to its application, and point out pitfalls
to be avoided in the interpretation of wavelet transform results.

Since most of the existing work has so far been of an exploratory
character and thus cannot be held as representative of the possible impact
of wavelets on fluid mechanics, only brief reference will be made to papers
dealing with applications. I shall also present several new diagnostics, all
based on wavelet coefficients, which may be useful to analyze, model, or
compute turbulent flows.

1. THE NEED FOR A SPACE-SCALE

DECOMPOSITION OF TURBULENT FLOWS

In the field of turbulence, one may feel uneasy about the fact that we have
two different pictures of turbulence, depending on the side of the Fourier
transform from which we perceive it. On the one hand, if we look at the
Fourier spectral space, we have a theory that assumes the existence of an
energy cascade between the different excited wavenumbers of the flow. It
predicts the universality of the Fourier energy spectrum in the inertial
range, namely for wavenumbers larger than those corresponding to the
integral scales at which the flow is excited and smaller than those cor-
responding to the dissipative scales where all instabilities are damped. In
this Fourier space approach the direct numerical simulation of a turbulent
flow requires a number of resolved Fourier wavenumbers which scales as
Re for two-dimensional flows and as Re9/4 for three-dimensional flows (Re
being the Reynolds number characteristic of the flow turbulence). On the
other hand, if we look at the physical space, we must admit a lack of
general theory. Still, we have a large amount of evidence, both experi-
mental (Townsend 1956, Kline et al 1967, Laufer 1975) and numerical
(Basdevant et al 1981, McWilliams 1984, Kim et al 1987), for the presence
of coherent structures in turbulent flows. They correspond to the con-
densation of the vorticity ficld into organized patterns, which contain most
of the energy--or enstrophy in dimension two--of the flow and where
nonlinearity is reduced, or even cancelled when the coherent structures are
axisymmetric. These coherent structures seem to play an important, but
not yet well understood, dynamical role. We can ask the following ques-
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tions. Are there some elementary coherent structures? Do their mutual
interactions have a universal character? Is it possible to compute the flow
evolution with a reduced number of degrees of freedom relative to the very
large number of Fourier components otherwise necessary? This reduction
could correspond to a projection of Navier-Stokes equations on those
coherent structures or on some related functional bases well localized in
physical space.

Being very uncomfortable with these two separate descriptions of tur-
bulence, I was immediately enthusiastic when, in 1984, A. Grossmann told
me about the wavelet transform theory he was developing from Morlet’s
original ideas. His theory had the promise of a unified approach which
could reconcile these two descriptions and allow us to analyze a turbulent
flow in terms of both space and scale at once, up to the limits of the
uncertainty principle. Another reason, rather naive, for the immediate
appeal of wavelets was the fact that the Morlet wavelet evoked to me the
shape of Tennekes and Lumley’s eddy (Tennekes & Lumley 1972) pro-
posed to model turbulence, and of some coherent structures whose exis-
tence had been conjectured by Ruelle (D. Ruelle, personal communication,
1983) and then observed by Basdevant in his numerical simulations of
two-dimensional flows (Basdevant & Couder 1986). Indeed, it seems much
better to decompose a turbulent field into such localized oscillations of
finite energy as wavelets, rather than into space-filling trigonometric func-
tions which do not belong to the L2(IIn) functional space and therefore are
not of finite energy.

In the context of turbulence, the wavelet transform may yield some
elegant decompositions of turbulent flows (Section 5.1). The continuous
wavelet transform offers a continuous and redundant unfolding in terms
of both space and scale, which may enable us to track the dynamics of
coherent structures and measure their contributions to the energy spectrum
(Section 5.2). The discrete wavelet transform allows an orthonormal pro-
jection on a minimal number of independent modes which might be used
to compute or model the turbulent flow dynamics in a better way than
with Fourier modes (Section 5.3).

2. WAVELET TRANSFORM PRINCIPLES

2.1 History

The wavelet transform originated in 1980 with Morlet, a French research
scientist working on seismic data analysis (Morlet 1981, 1983; Goupillaud
et al 1984), who then collaborated with Grossmann, a theoretical physicist
from the CNRS in Marseille-Luminy. They developed the geometrical
formalism of the continuous wavelet transform (Grossmann et al 1985,
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1986, 1987, 1989; Grossmann 1988; Grossmann & Morlet 1984, 1985;
Grossmann & Paul 1984; Grossmann &Kronland-Martinet 1988) based
on invariance under the affine group namely translation and dilation--
which allows the decomposition of a signal into contributions of both space
and scale (Section 3.1). In particular the continuous wavelet transform 
well suited for analyzing the local differentiability of a function, and for
detecting and characterizing its possible singularities (Holschneider 1988b;
Jaffard 1989a; Arn6odo et al 1988; Holschneider & Tchamitchian 1989;
Mallat & Hwang 1990; Jaffard 1991a,b). It is also useful for signal process-
ing, in particular with the "skeleton" technique (Escudi6 & Torr6sani 1989,
Tchamitchian & Torrbsani 1991, Delprat et al 1991) which allows the
extraction of the modulation law of a complex signal, assuming some
stationary phase hypothesis. The continuous wavelet transform has been
extended to n dimensions by Meyer (1985) and then by Murenzi using
rotation, in addition to dilation and translation (Murenzi 1989, 1990;
Antoine et al 1990, 1991). Murenzi is presently extending it to n dimensions
plus time (Duval-Destin & Murenzi 1991). The wavelet transform then
works as a "microscope," discriminating different scales in an n-dimen-
sional field, and as a "polarizer," separating the different angular con-
tributions of the signal.

When, in 1985, Meyer read Morlet and Grossmann’s work, he recog-
nized Calderon’s identity (Calderon 1964) behind the admissibility con-
dition and the reconstruction formula of the continuous wavelet theory
(Section 3.1). He then collaborated with Grossmann and Daubechies
(Daubechies et al 1986) to select a discrete subset of the continuous wavelet
space, chosen in such a way that it constitutes a quasi-orthogonal complete
set of Lz(Rn), called a wavelet frame (Section 4.1). Complementary to this,
Morlet and Grossmann had previously defined an interpolation formula--
based on the reproducing kernel property Of the continuous wavelet trans-
form (Section 3.2)--which recovers the whole space of continuous wavelet
coefficients from the coefficients of a discrete subset, such as a wavelet
frame (Grossman & Morlet 1985). Meyer then tried to prove that, even
if wavelet decomposition behaves in some sense as an orthogonal basis of
L2(R"), there could not be any true orthogonal basis constructed with
regular wavelets. The Haar orthogonal basis (Haar 1909) was well-known,
but the lack of regularity of the functions it uses creates problems for
decomposing smooth functions, whose Haar coefficients would only decay
very slowly at infinity. Meyer was therefore surprised to discover an
orthogonal basis (Section 4.2) built from a regular wavelet (Meyer 1986,
1987if, b, 1988). He later extended it to the n-dimensional case in col-
laboration with his student Lemari+ (Lemari6 & Meyer 1986). In 1987,
Meyer (1988, 1989a,b,c, 1990a,b,c) and Mallat (1988) introduced the 
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cept of multiresolution analysis, which is very similar to the Quadratic Mirror
Filters technique (Esteban & Galand 1977) defined in digital processing
and computer vision. This approach gives a general method for building
orthogonal wavelet bases and leads to the implementation of fast wavelet
algorithms (Mallat 1989a,b). Since then many other orthogonal wavelet
bases have been found, among them: the Battle-Lemari6 wavelet (Battle
1987, 1988; Lemari6 1988), which uses exponentially decreasing spline
functions, the discrete orthogonal bases of Rioul (1987, 1991), and the
compactly supported and regular wavelets of Daubechies (1988, 1989),
built by iterating some discrete filters.

From today’s point of view we can recognize, a posteriori, that several
aspects of wavelet theory were already present, more or less explicitly, in
many fields, such as image processing (Granlund 1978), because this kind
of decomposition is indeed very natural. This is particularly clear for the
Str6mberg orthogonal basis (Str6mberg 1981) used in functional analysis
and for the hierarchical basis of Zimin proposed to model turbulence
(Zimin 1981). Today wavelet theory is a new and rapidly evolving math-
ematical technique, which has established similarities between various
methods that were independently developed in different fields, from func-
tional analysis to signal proccssing, and gives them a common theoretical
framework.

2.2 Definition

What are the necessary ingredients of the wavelet transform?

ADMISSIBILITY TO be called a "wavelet," the analyzing function should
be admissible (Section 3.1), which, for an integrable function, means that
its average should be zero. This requirement excludes, for instance, func-
tions used in Karhunen-Lo6ve--also called Proper Orthonormal
Decompositions (Lumley 1981, Aubry et al 1988)--which are not of zero
mean value.

SIMILARITY The scale decomposition should be obtained by the trans-
lation and dilation of only one "mother" function. All analyzing wavelets
should therefore be mutually similar, namely scale covariant with one
another, in particular they should have a constant number of oscillations
(Section 3.1). Thus this dilation procedure allows an optimal compromise
in view of the uncertainty principle: The wavelet transform gives very good
spatial resolution in the small scales and very good scale resolution in the
large scales (Figure 1). This similarity condition excludes the windowed
Fourier transform of Gabor (1946), whose scale decomposition, is based
on a family of trigonometric functions exhibiting increasingly many oscil-
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"Fourierlets," which do not give an exact reconstruction formula for
synthesizing the signal from its spectral coefficients.

REGULARITY In practice the wavelet should also be well localized on both
sides of the Fourier transform, namely it should be concentrated on some
finite spatial domain and be sufficiently regular. Indeed, there also exist
regular wavelets that vanish outside a domain of compact support (Section
4.2). This additional regularity requirement excludes all discontinuous
functions such as those used in the Haar orthogonal decomposition (Haar 1909).

CANCELLATIONS For some applications, in particular turbulent signal
analysis, the wavelet should not only be of zero mean value (admissibility
condition), but should also have some vanishing high-order moments
(Section 3.1). This requirement, which eliminates the most regular (poly-
nomial) part of the signal, allows the study of its high-order fluctuations
and possible singularities in some high-order derivatives. In this case, the
wavelet coefficients will be very small in the regions where the function is
as smooth as the order of cancellation and the wavelet transform will only
react to the higher order variations of the function.

2.3 Compar&on with the Fourier Transform

Since Fourier’s work on heat theory, the most commonly used basis
functions in physics have been the trigonometric functions, because they
constitute an orthogonal basis of L2(0, 2~), the functional space of square
integrable functions. Thus they allow the decomposition of any function
f(x) c L2(O, 2r0 into a linear combination of Fourier vectors, defined by
their Fourier coefficients f(k) = (eik~lf(x)). Unfortunately the trigono-
metric functions oscillate forever and therefore the information content
off(x) is completely delocalized among all the spectral coefficients f(k).
Indeed the Fourier transform does not lose information about f(x), but
instead "spreads" it away; it is then very difficult, or even impossible, as
soon as there is some computational noise, to study the properties off(x)
from those off(k). Let us for instance take the case of a function that 
smooth everywhere except at a few singular points. The positions of the
singularities are related to the phase of all the Fourier coefficients. There-
fore there is no way to localize the singularities in Fourier space and the
only solution will be to reconstructf(x) fromf(k). Similarly, this function
f(x) will have a power-law spectrum so that the modulus of the Fourier
coefficients will scale as k ~. This indicates thatf(x) is globally nonregular
with singularities of at most exponent e. Unfortunately, we have then lost
the essential information, namely the fact thatf(x) is regular everywhere
except at a few singular points. If, for instance, these singular points are
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due to experimental errors, we will not be able to filter them out because
they have affected all the Fourier coefficients.

In contrast to the Fourier transform, the wavelet transform keeps the
locality present in the signal and allows the local reconstruction of a signal.
It is then possible to reconstruct only a portion of it or only its local
contributions to a given range of scales. In fact, there is a relationship
between the local behavior of a signal and the local behavior of its wavelet
coefficients. For instance, if a function f(x) is locally smooth, the cor-
responding wavelet coefficients will remain small, and iff(x) contains 
singularity, then in its vicinity the wavelet coefficients’ amplitude will
increase drastically (Section 3.2). Likewise the wavelet series off(x) 
verges locally to f(x), even if f (x) is a distribution (in this case the order
of the distribution should not exceed the regularity of the analyzing wave-
let). By "locally" we mean that, for reconstructing a portion of a signal,
it is only necessary to consider the wavelet coefficients belonging to the
corresponding subdomain of the wavelet space, the so-called influence
cone (Section 3.2). Consequently, the wavelet transform is very robust for
reconstruction. Indeed, if the wavelet coefficients are occasionally subject
to errors, this will only affect the reconstructed signal locally near the
perturbed positions, while the Fourier transform would spread out the
errors everywhere in the reconstructed signal. The Fourier transform is
also particularly sensitive to phase errors, due to the alternating character
of the trigonometric series. This is not the case for wavelet transforms. It
is even possible to correct the errors present in the continuous wavelet
coefficients, thanks to the built-in redundancy of the continuous wavelet
transform duc to its reproducing kernel property (Section 3.1).

In fact the wavelet transform is not intended to replace the Fourier
transform, which remains very appropriate, for instance, in the study of
harmonic signals or when there is no need for local information. Let us
also mention that the Fourier transform plays a role in the admissibility
condition defining wavelets (Section 3.1) and in the construction of discrete
filters used in multiresolution analysis (Section 4.2). In practice the Fourier
transform may be thought of as imbedded into the wavelet transform,
because it is, to first approximation, possible to compute the Fourier
spectrum of a signal by summing its wavelet coefficients over all positions
scale by scale (Section 5.2).

3. THE CONTINUOUS WAVELET TRANSFORM

3.1 Analysis and Synthesis

WAVELET DEFINITION The only constraint imposed on a function ~b(x),
real or complex valued, in order to be a wavelet is the admissibility
condition which requires:
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(1)

n being the number of spatial dimensions. If ~b(x) is integrable this actually
implies that it has zero mean:

fa~(x)d"x = 0 or ~(Ikl = 0) (2)

In practice the wavelet should also be well-localized in both physical and
Fourier spaces. If one wants to study the behavior of the Mth derivative
off(x), the wavelet should have cancellations up to order M, in order that
it does not react to the lower-order variations off(x), namely we should
have:

fR"~O(x)xm d"x = (3)

for all m _< M.

WAVELET ANALYSIS From this function ~, the so-called mother wavelet,
we generate the family of continuously translated, dilated, and rotated
wavelets:

./2¢[-a-, x- x’-I= l- [_ (0) ~J, (4)

with lc R+ as the scale dilation parameter corresponding to the width of
the wavelet and x’ e R" as the translation parameter corresponding to
the position of the wavelet; l and x’ are dimensionless variables. In the
continuous wavelet literature the scale is denoted by a and the position by
b to recall that this transform is based on the affine group ax÷b. We
prefer here to denote the scale l, because it corresponds to the length scale
at which we analyze f(x), and the position of the analyzing wavelet x’,
because it indeed corresponds to the actual position in physical space; we
must distinguish x’ and x, which will be used as an integration variable in
(6). The rotation matrix ~ belongs to the group SO(n) of rotations 
R", and depends on the n(n-1)/2 Euler angles 0. The factor l -"/z is a
normalization which causes all the wavelets to have the same L2 norm;
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therefore all wavelets will have the same energy and the wavelet coefficients
will correspond to energy densities.

The admissibility condition (I) implies that the Fourier transform of 
is rapidly decreasing near k = 0. Therefore the Fourier transform of the
family ~tx.0 constitutes a bank of passband filters with constant ratio of
width to center frequency:

q~tx,00’) = Z"/2~[t f~- ’(0)k] e-,/:~k’,’. (~)

To summarize, the family of analyzing wavelets ~;~,0 may be compared to
a mathematical microscope and polarizer, for which ~ characterizes the
optics, l- ~ is the resolution, x’ the position, and 0 the polarization angle.

The continuous wavelet transform of a function or a distribution f(x)
is the LZ-inner product betweenfand the wavelet family ~;~,0, which gives
the wavelet coefficients:

f(l, x’, O) = ($,~.olf) = ~ f(x)$~.0(x) (6)
n

where $* is the complex conjugate of $, or likewise the inner product
between~and the filter bank @~’0, which gives:

f(l, x’, 0) = f f(k)ff~.0(k) (7)
n

Figure 2 shows the continuous wavelet transform of some "academic"
signals chosen as limiting cases of a hypothetical turbulent signal: a delta
function, a period-doubling signal, and a Gaussian white noise signal.

WAVELET SVNX~S~S The admissibility condition (1) implies the existence
of a reproducing kernel (which will be defined in Section 3.2). We can
therefore recover the signalf(x) from its wavelet coefficients:

f(x) = c~’ +. .~(~,x’,0)~..0(x) i.+, (8)

If @ is complex-valued andfreal-valued we should only take the real part
o~(8).

For one-dimensional or for isotropic wavelets we need not integrate
over angles. Otherwise we would have to carry out the following procedure.
In order to integrate over the n(n-I)/2 Euler angles 0, we define the
integral:

o) .... (~ ,~ ...... (,~... ~(o). (9)
0
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In this integral we use the invariant measure d#(O) of the rotation group
SO(n) defined as:

n--1 k

= ’~dO~. (10)did(O) A. I-[ YI sin J- Oj
k--lj--I

with

k= ! 27~k/2

and the Euler angles

50_<0~<2~z for k~[1,n-1],

_<0~<~ for j#landk~[1,n-1].

By analogy with Fourier space, we shall call "wavelet space" the set of
functionsfthat are wavelet transforms of f for a given wavelet

The continuous wavelet transform isometrically transforms a function
of n variables into, either an (n+ 1)-dimensional wavelet space if we use
an isotropic wavelet, or an {n[(n + 1)/2] + 1 }-dimensional wavelet space 
we consider a directional wavelet. Therefore the information contained in
the wavelet coefficients is redundant, which is expressed by the reproducing
kernel property of the continuous wavelet transform (Section 3.2); conse-
quently there exist many different reconstruction formulas. For instance,
it is possible to reconstructf(x) from its wavelet coefficients using another
function, the synthesizing wavelet, different from the analyzing wavelet,
which then must verify a modified admissibility condition (Holschneider
1988a, Holschneider & Tchamitchian 1989). We can even choose a dis-
tribution such as the delta function (b) to reconstruct the signal. In this
case we get the simple reconstruction formula, found empirically by J.
Morlet:

f(x) = 1 ÷f( l,x,O)~d#(O) (11)

with

c~ ; (2~)~j2

We mention incidentally that we can use a wavelet to synthesize a signal
from what are called its Radon transform coefficients, which may be
interesting for tomographic applications (Holschneider 1990).
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3.2 Elementary Properties

We will now list some of the main properties of the continuous wavelet
transform. For the sake of simplicity, from here on we will consider the
one-dimensional wavelet transform, the generalization to n dimensions
being straightforward, and discard the prime in x’. We will denote the
continuous wavelet transform of a functionf(x) by the operator notation
W[f](x), and the resulting wavelet coefficients by f(l, x).

LINEARITY The wavelet transform is linear because it is an inner product
between the signal f and the wavelet ~O. Likewise, the continuous wavelet
transform of a vector function is a vector whose components are the
continuous wavelet transform of the different components.

COVARIANCE BY TRANSLATION AND DILATION The continuous wavelet
transform is covariant under any translation x0:

W[f] (x-- Xo) = f(1, x-- Xo), (12)

which in particular implies that differentiation commutes with continuous
wavelet transform; namely we have

c?~ W ( f ) = W ~x 

V[W(f)] = W(Vf),

V.[W(f)] = W(V.f). (13)

A consequence of the translation covariance is the fact that the frequency
of a monochromatic signal can be read off from the phase of the wavelet
coefficients (Escudi6 & Torrtsani 1989, Guillemain 1991, Tchamitchian 
Torrtsani 1991, Delprat et al 1991). The number of zeros of the phase on
lines with l = constant gives the frequency of the signal (Figure 2b). This
property is independent of the wavelet chosen.

The continuous wavelet transform is also covariant under any dilation
by/0:

IV[f] (lox) = IF 1.y(/0/, lox). (14)

A consequence of the dilation covariance is the fact that the wavelet
transform of a power-law function is fully determined by its restriction to
any line l = constant. The lines of constant phase point out the possible
singularities of the function (Figure 2a). This property is also independent
of the wavelet choice.
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DIFFERENTIATION

IOmf l
~+ oo am

W ~m = (- 1)"~ f(x)~[~.*~t(x)] (15)

ENERGY CONSERVATION

lf(x)lZdx = l If(l,x)l’lf (/,x)l ~ (16)

The wavelet transform conserves energy not only globally but also locally
if one considers all coefficients inside the "influence cone" which consists
of the spatial support of all dilated wavelets. The above relation cor-
responds to energy conservation, which is a generalization of the Plan-
cherel identity to the continuous wavelet transfo~. It implies that there
is no loss of information in transforming the signal into its wavelet
coefficients.

The total energy can also be split among the different scales l:

f_~ ~
2dx

~(~) = C&’ ~ lf(i,x)l 

spac~-scaL~ ~oc~Tv The space-scale locality of the analyzing wavelet
~ leads to the conservation of locality in the wavelet coefficient space, in
contrast to the Fourier transfo~ which loses the locality present in the
signal. For instance, if @ is well-localized in the space interval a~ for l = 1,
then the wavelet coefficients corresponding to the position x0 will all be
contained in the influence cone defined by x ~ [x0-(l" a~)/2, x0 + (l" a~)/2].
This cone corresponds to the spatial support of all dilated wavelets at the
point x0. Likewise, if ~ is well-localized in the Fourier interval Ak around

k~ for l = 1, then the ~avelet coefficients corresponding to the Fourier
frequency k0 in the signal will only be contained in the subband defined
by ~ [kAk0+(ak/20) ’, ~(~0-(ak/~t))-’].

LOCAL REGULARITY ANALYSIS One of the most interesting properties of
the continuous wavelet transfo~, implied by its dilation covariance, is
the possibility it offers to measure the local regularity of a function and
therefore to characterize the functional space to which it belongs (Hol-
schneider 1988a,b; Jaffard 1989a,b, 1991c; Holschneider & Tchamitchian
1989, 1990; Tchamitchian 1989c). For instance iff~Cm(xo), i.e. iff is
continuously differentiable in x0 up to order m, then

~(l, xo) ~ lm+~P/2 for l~0. (18)

The factor l ~/~ comes from the fact that, due to the scale invariance (14),
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if we want to study the scaling of a function we must take the wavelet
coefficients in the L~ norm, instead of L2. The wavelet coefficients written
in the Lt norm are related to the wavelet coeff~cients written in the L2

norm by the simple expression:

fL’ = l-1/2yL2. (19)

Iffbelongs to A~(x0), the H61der space of functions of exponent ~, i.e. 
f is continuous, not necessarily differentiable in x0 but such that

If(x+xo)-f(x)[ = Clxol ~ with g < 1 and constant C > 0, (20a)

then

3~(/, x0) Ce’f~*l~l 1/~ for l ~ 0, (20b)

where @ is the phase of the wavelet coefficients.
The transformed function f is regular even iff is not. The information

about any possible singularities present in the signal, their position x0,
their strength C, and their scaling exponent ~, is given by the asymptotic
behavior off(l, xo), written in norm L~ (19), for l tending to zero. If the
L~-norm wavelet coefficients diverge in the small scales at the point Xo,
then f is singular at x0 and the slope of log If(l, x0) l versus log l will give
the exponent of the singularity (20). It is also very easy to localize the
possible singularities off by looking at the phase of its wavelet coefficients:
The lines of constant phase converge on the singularities (Figure 2a). If,
on the contrary, the modulus of the wavelet coefficient becomes zero in
the very small scales around xo, then the functionf is regular at x0. This
result is in fact the converse of (18), but its mathematical justification
requires more global assumptions on the analyzed function, namely some
decay of its wavelet coefficients in the vicinity of x0 (Jaffard 1989a). There-
fore, in practice, to locally analyze a singularity at x0 we should first verify
that at small scales the wavelet coefficients around x0 are not larger than
those at x0. Then we should consider not only the coefficientsf(l, x0), but
at least all coefficients belonging to the influence cone pointing towards
x0. Those properties are independent of the choice of the wavelet and
they are particularly useful for characterizing fractals and multifractals
(Holschneider 1988b; Arn+odo et al 1989; Ghez & Vaienti 1989; Argoul
et al 1988, 1990; Falconer 1991; Freysz et al 1990).

REPRODUCING KERNEL Using the wavelet ~k, we can decompose any func-
tion or distribution f into its wavelet coefficients. In the case of the
continuous wavelet transform these coefficients form an over-complete
basis. This implies a correlation between the wavelet coefficients which, in
turn, corresponds to the existence of a reproducing kernel K6 associated
to the wavelet ~ defined by
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K~(l,, 12, x’~, x’~) = ~ O,,x;O~x’~ dx. (21)

K~ characterizes the correlation of the continuous wavelet transform
between two different points of the continuous half-plane (l, x). Its struc-
ture depends on the choice of the wavelet; indeed the reproducing kernel
measures the space and scale selectivity of each wavelet ~,~ and will there-
fore be very useful in helping to choose the wavelet most appropriate to a
given problem.

Reciprocally, an arbitrary function]’of the half-plane (/, x)¯ + x R)is
not in general the wavelet transform of some function of R with respect
to a given wavelet ~. This will hold only if]’is square integrable and satisfies
the reproducing kernel equation (Grossmann et al 1989, Grossmann 
Kronland-Martinet 1988):

]’(l~x’) = .~o+ j- ~ g~,(l~, 12, x’~, xl) f(12, xl) dl2l ~dx’~ 

This condition should be checked if we want to partially resynthesize a
signal from a filtered subset of its wavelet space. An important consequence
of the reproducing kernel property (22) is the fact that the continuous
wavelet transform of a random signal (Figure 2c) shows some correlations
that are obviously not in the signal, but in the wavelet transform itself.
The size of the correlated regions is given by the reproducing kernel and
decreases with the scale. This is one of the most common pitfalls of the
continuous wavelet transform and one should be particularly aware of it
when studying turbulent signals. In the case of discrete orthogonal wavelet
transform (Section 4.2) this problem no longer exists, since by definition
of orthogonality all wavelet coefficients are uncorrelated.

3.3 Implementation

WAVELET CHOICE AS we have seen, the wavelet transform is an inner
product between an analyzing wavelet at a given scale 1 and the signal to
be analyzed; therefore the wavelet coefficients combine information about
both the signal and the wavelet. The choice of the transform, orthogonal
or not, and of the appropriate wavelet is thus an important issue which
depends on the kind of information we want to extract from the signal.
For analyzing purposes the continuous wavelet transform is better suited
because its redundancy allows good legibility of the signal’s information
content. For compression or modeling purposes, the orthogonal wavelet
transform (Section 4.2) or the newly developed wavelet packet technique
(Section 4.3) are preferable because they decompose the signal into 
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minimal number of independent coefficients. Then for choosing the appro-
priate wavelet, we must look at its reproducing kernel (21), which charac-
terizes its space, scale, and angular selectivity.

EXAMPLES OF COMPLEX-VALUED WAVELETS Let us consider the analysis of
a real-valued signal such as those encountered in fluid mechanics. In this
case, we usually choose a continuous wavelet transform with a progressive
complex-valued wavelet, because the quadrature n/2 phase shift between its
real and its imaginary parts allows us to eliminate the wavelet’s oscillations
when visualizing the wavelet coefficient modulus (Figure 2). From the
resulting complex-valued wavelet coefficients we can thus separate the L2-

modulus, which gives the energy density, and the phase, which detects
singularities and measures instantaneous frequencies (Escudi6 & Torr6sani
1989, Tchamitchian & Torr6sani 1991, Guillemain 1991, Delprat et al
1991). As already stated, the lines of constant phase converge on singu-
larities and the number of zero-crossings on lines l = constant, if the latter
are parallel, is related to the signal frequency. The phase behavior is
independent of the choice of wavelet.

The most commonly used complex-valued wavelet is the Morlet wavelet
(Figure 3a).

O(x) = e’J-2S~o "~ e-(Ixl:/2), (23)

which is a plane wave of wavevector k6, modulated by a Gaussian envelope
of unit width. Incidentally, the Morlet wavelet is only marginally admis-
sible, because it is of zero average only if some very small correction terms
are added. In practice, if we take [kol = 6, the correction terms become
unnecessary because they are of the same order as typical computer round-
off errors. Another way to ensure admissibility is to impose ~7(0) = 0. 
Fourier space, the Morlet wavelet is given by:

{~(k) = (2z)- ,/2 e-(k-t:¢,)2/2 for k > O,

~ (k) for k G O.
(24)

A very interesting property of the Morlet wavelet in its generalization to
n dimensions is its angular selectivity, which gets better and better as I k, I
increases, but with a concomitant reduction in its spatial selectivity. In
order to have both, angular and spatial selectivity Antoine and coworkers
have proposed to elongate the Morlet wavelet, while keeping I kol small
enough to ensure a good space localization (Antoine et al 1990, Antoine
et al 1991).

Another complex-valued wavelet, mostly used in quantum mechanics
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1989), is the Paul wavelet which is analytic

(25)

{~m(k) kme k fork > 0,

~,,,(k) = for k _< 0.

The higher the order rn, the better the cancellations (vanishing moments) 
the wavelet. The complex-valued wavelets are called progressive wavelets if
their Fourier coefficients are zero for negative wavenumbers. They are well
adapted to analyze causal signals, i.e. signals for which there is some action
of causality. This is because progressive wavelets preserve the direction of
time and do not create parasitic interference between the past and future.
Progressive wavelets are used in particular to analyze musical sounds
(Kronland-Martinet ct al 1987, Kronland-Martinct 1988).

EXAMPLES OF REAL-VALUED WAVELETS Some commonly used real-valued
wavelets are the ruth derivatives of the Gaussian (Figures 3c and 3d):

I[Im(X ) = (-- 1) m ~(d--lx12/2), (26)
ax

or

~ffm(k) m(~-- lk)m e-Ikl2/2.

The higher order derivatives imply more cancellations (vanishing
moments) of the wavelet. Among these derivatives of the Gaussian, the
most widely used is the Marr wavelet, also called the "Mexican hat"
(Figure 3d), which is the Laplacian of a Gaussian (m ~ 2). The 
wavelet in its generalization to n dimensions is isotropic and therefore
cannot discriminate different directions in the signal. Jaffard (1991 b) has
proposed to use, instead of a Laplacian of a Gaussian, a Gaussian differ-
entiated in only one direction, which will then be nonisotropie with a good

Figure 3 Examples of wavelets ~b commonly used for the continuous wavelet transform
(continuous line for the real part and broken line for the imaginary part). We visualize ~b(x)

(left) and ~(k) (right). (a) Morlet wavelet, for k~ = 6, (b) Paul’s wavelet for m = 4, (c) First
derivative of a Gaussian, (d) Marr wavelet (second derivative of a Gaussian), (e) 
(Difference of two Gaussians).

www.annualreviews.org/aronline
Annual Reviews

http://www.annualreviews.org/aronline


414 FARGE

angular selectivity. Antoine and co-workers have proposed to elongate it
to recover some angular selectivity (Antoine et a11990, Antoine et al 1991).

Another possible real-valued wavelet is the D.O.G., Difference of Gaus-
sians (Figure 3e), which is a discrete approximation to the Laplacian of 
Gaussian:

d/(x) = -Ixl2/2- ½e-Ixl2/8, (27)

or

ff (k) = (2re) -~/2 [e-Ikl 2/2 _ e- 21kl 2].

Dallard and Spedding have proposed an isotropic version of the two-
dimensional Morlet wavelet, called the Halo wavelet (Dallard & Spedding
1990), which is then real-valued but does not have (as the Morlet wavelet)
zero-mean value unless one enforces it:

~(k) = e-(l~l-lk~

: 0.
From a real-valued wavelet, which is self-conjugated, i.e. such that
~(k) = ~*(-k), we can always construct a progressive complex-valued
wavelet. For this cancels its Fourier coefficients with negative wave-
numbers. The procedure is straightforward in one dimension, but it
becomes less obvious in the n-dimensional case, where the definition of
negative wavenumbers is purely conventional. This problem has been
recently addressed by Dallard and Spedding, who proposed, using such a
method, the construction of a complex-valued isotropic Morlet wavelet
in two dimensions, named the Arc wavelet (Dallard & Spedding 1990).
Unfortunately the Arc wavelet presents several problems: Its imaginary
part is neither isotropic nor well-localized in physical space. In fact it is
probably impossible to construct an isotropic complex-valued wavelet. In
practice, if one wants to combine both isotropy and complex-value, Farge
and coworkers have proposed to compute a Morlet wavelet transform for n
angles, n large enough relative to the angular selectivity of the reproducing
kernel. They then integrate the modulus of the wavelet coe~cients, but
not the coefficients themselves, over all n angles (Farge et al 1990).

WAVELET COEFFICIENT REPRESENTATIONS After choosing the wavelet, we
also have to choose the most appropriate graphical representation of the
wavelet coefficients. The most commonly used representation is to compute
the wavelet coefficients in the L2-no~ and visualize them, with a linear
scale for x and a logarithmic scale for l, using the full color range~for
instance between 0 and 255 color levels when data are coded on ! byte
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at each scale. This normalization of the wavelet coefficients, performed
scale by scale, enhances the small-scale coefficients, but we cannot then
compare the coefficient amplitudes between different scales. Therefore we
should not renormalize if we want to compare the energy density at
different scales.

If one is not interested in the energy density but rather in the scaling
properties of the wavelet coefficients, another solution is to compute them
with the L~-norm (19) instead of a L2-norm. It is then no longer necessary
to renormalize the coefficients at each scale because all coefficients, what-
ever the scale, will now have a similar range of values.

Some authors use a linear scale for l, but this is not recommended
because the small-scale behavior--which is in general the most interesting
to study--is then completely flattened. In any case, a logarithmic repre-
sentation of the scale is natural for wavelets, because it corresponds to the
multiplicative nature of the dilation parameter. For instance, in the case
of orthogonal wavelets (Section 4.2), we should take the base 2 logarithm,
since the dilation parameter is usually a multiple of 2, and we should
therefore represent the wavelet coefficients octave by octave.

ALGORITHMS The root of the continuous wavelet analysis algorithm is a
set of convolution products between the signal f and all dilated and
rotated wavelets ~blo defined in Equation (4). Therefore the first step of the
algorithm will be to generate the family of all dilated and rotated wavelets
~10 defined in Equation (4). We then perform the convolution product,
either in physical space by integrating (6) over all discretized positions
x = i" Ax, or in Fourier space using a FFT (Fast Fourier Transform) and
multiplying ~0 defined in (5) andf before transforming the result back 
physical space to obtainf~.~0.

In all cases, we must check that the wavelet sampling remains sufficient
to compute the smallest scale linen, in order to minimize numerical errors
and avoid aliasing. Incidentally one should notice that the computation
of the large-scale wavelet coefficients requires a wavelet sampling as good
as the signal sampling. We should also ensure that, when computing the
large scales, we still have enough of the signal on the left and on the right
while translating ~/0. If such is not the case, we should extend the signal
by keeping its leftf(Xmin) and rightf(Xmax) values constant, or make it decay
smoothly to zero; in this case the wavelet coefficients inside both influence
cones (Section 3.2), associated with Xmin and Xmax, respectively, would 
meaningless. To avoid such side effects, the best solution would be to make
the signal periodic, if it is not already so.

The best way to test the wavelet analysis algorithm, is to compute the
wavelet transform of a Dirac function, which should give the analyzing
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wavelet at each scale (Figure 2a). To check if the spatial and angular
samplings are sufficiently dense, we should compute the reproducing kernel
(Section 3.2), i.e. the wavelet transform of the analyzing wavelets them-
selves, considering only the wavelet at scale /min and angle 00; then we
should plot, for any point Xo, the wavelet coefficients in l, 0 polar coor-
dinates. If we do not see any spurious side effects, the sampling is therefore
sufficient.

The simplest algorithm for continuous wavelet synthesis is to compute
the Morlet formula (11), which uses a Dirac function as a synthesizing
wavelet, because this formula minimizes the number of integrations. Due
to numerical errors in the wavelet analysis algorithm, the reconstruction
of the signal will not be exact. If we want to ensure an exact reconstruction,
we should have computed the wavelet analysis in physical space by inte-
grating (6) using an interpolation basis associated with the sampled signal
f, instead of the sampled signal itself.

For a one-dimensional signal sampled over I points which has a very
large number of scales J (in audioacoustics for instance the scales range
typically from 1 to 21°), the computing time may soon become prohibitive,
because it would vary as J" 12, or J- I- log2 Iifwe use the FFT. In this case
there exists a fast algorithm, called "algorithme ~i trous" (Holschneider et
al 1988, 1989; Dutilleux 1989), which, at each scale, keeps constant the
number of sampled points for the wavelet and thus avoids the over-
sampling of the wavelet which was necessary to compute the large-scale
coefficients; it computes only I/(2 s) points for the signal, 2 being the ratio
between two successive scales 2 = lj+ 1/l~. The operation count is then
proportional to J" I" logz/, without requiring signal periodicity as does
the FFT algorithm. The wavelet coefficients are only computed on the
incomplete grid ("grille ~ trous") of size J-logz I and not on the complete
grid of size J" I; we must then use an appropriate interpolation (Section
4.1) if we want to compute all the coefficients of the complete grid. For
2 = 2, namely if the scales vary octave by octave, the "algorithme gt
trous" is very similar to the Mallat algorithm (Section 4.2) developed for
orthogonal wavelets, but without requiring orthogonal wavelets.

4. THE DISCRETE WAVELET TRANSFORM

4.1 Wavelet Frames

Z)EFINn’~ON In a sense, the analysis (6) and synthesis (8) formulas 
as if the functions Ol~, l e R + and x e R, constituted an orthogonal complete
set of Lz(R): The coefficients of the decomposition off(x) in this basis 
given by (6) and the reconstruction off(x) from these coefficients is given
by (8). In fact, for the continuous case the sct of functions ~/x is highly
redundant. Is it possible to select a subset F, called a "wavelet frame," such
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that the ~Oit ~ F would constitute a complete set that is almost orthogonal
for L2(R)? The answer is yes, but only approximately (Daubechies et 
1986, Daubechies 1990). We proceed with the following discretization of
the half-plane l, x: l is logarithmically sampled at intervals of (A log l)-j,

je Z, and x is linearly sampled, with an increment that depends on the
scale, at intervals of i" Ax" (A log l) -s, i~ Z. Thus the measure dl" dx/l2 in
Equation (8) becomes (A log l)-2j. The corresponding discrete analysis
formula is

fji= (~jilf)= ~+~f(x)l[tji’dx_ (29)

with

ffj,(x) = (A log/)]/2~[(A l)]x - iAx]

forje Z, ie Z, and the discrete reconstruction fo~ula is

f(x) = C Z E ~.~O~+R, (30)

where C is a constant and R is a residual which is zero only if the frame
is orthogonal. A log I can in general be made small enough so that R can
be neglected, and we then have a quasi-orthogonal frame.

QUASI-ORTHOGONALITY The reconstruction fo~ula is only an approxi-
mation from which, by iteration, one can obtain an exact reconstruction
off(x) when C ~ 1 and R ~ 0 (Daubechies et al 1986, Daubechies 1987).
This optimal frame is then quasi-orthogonal and complete (tight frame).
For instance let us consider the Marr wavelet, O(x) = (1-xZ)e-~/z. Its
optimal frame, namely that which minimizes R in (30), corresponds 
A log l = 2~/~ and Ax = 1/2 (Daubechies 1989). With this frame the error
in the energy for the reconstruction off(x) is less than 2 x 10- ~, which 
sufficient for most applications. The discretization A log l = 2 and Ax = 1
corresponds to the dyadic grid (Figure 4a), for which it is also possible 
construct some exactly orthogonal wavelet bases (Section 4.2). For the
Morlet wavelet (23) its optimal frame corresponds to the dyadic grid only
when I k¢} = 3.

INTERPOLATION With the discrete wavelet transform we have lost the
covariance by dilation and translation of the continuous wavelet transform
and the redundancy of the wavelet coefficients, both properties which can
be very useful for signal analysis and signal processing. It is actually
possible, under some additional hypotheses, to recompute the whole set
of the continuous wavelet coefficients from a discrete subset of the wavelet
coefficients by using an appropriate inte~olation (Grossmann & Morlet
1984, Grossmann et al 1989) based on the reproducing kernel property
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a
Xmin=0 x=2 J i Xmax=2 J (1-1)

b

Discrete filters associated to scaling functions ~
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] putting one zero
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] taking one sample

] Multiplication by 2
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fT.l

FixTure 4 Multiresolution analysis. (a) The dyadic grid, (b) Illustration of the multiresolution
principle in Fourier space, (c) Mallat algorithm.
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(Section 3.2) of the continuous wavelet transform. With the frames and
the interpolation formula, we now have a complete methodology for
extracting the quasi-orthogonal discrete wavelet coefficients from the con-
tinuous wavelet coefficients using the wavelet frames and vice-versa to
recover the continuous wavelet coefficients by interpolating from the dis-
crete wavelet coefficients. This two-way approach allows us to combine
the redundancy and the geometrical properties of the continuous wavelet
transform with the economy of the discrete orthogonal wavelet transform.
Therefore in practice the distinction between the continuous wavelet trans-
form and the orthogonal wavelet transform is often not so important.

4.2 Orthogonal Wavelets

DEFINITION AS we have seen, the frames F are quasi-orthogonal complete
sets of L2(R). But there also exist some special wavelets ~b such that

~s~i(x) = U/2~s(2~x--0, withj~Z, i~Z, (31)

constitutes a genuine orthogonal basis of Li(R); namely the functions $(x)
are orthogonal to their translates by discrete steps x = 2-j’i and their
dilation by l = 2-s, which corresponds to the dyadic grid (Figure 4a), and
the family (31) is complete in L2.

Using an orthogonal wavelet basis {~Oji}, we can decompose any function
or distributionf(x), decaying sufficiently fast at infinity, such that

+oo 4-~o

f( X)= Z Z ~’i~ji(X) (32)
j~--m i=--oo

with

~i= <~b,i’f) = f T f(x)~b(x-2-’i)dx’_

Orthogonality implies that the total energy is conserved:

tf(x)12dx = ~ ~ I~-i[2. (33)
-- j=--~ i=--~

Contrary to the continuous wavelet transform (Section 3.2) thc orthogonal
wavelet transform is not covariant by translation and dilation, except by
discrete translations 2-Ji and discrete dilations 2-~. To recover in practice
the translational covariance Mallat and Zhong considered the zero-cross-
ings, or the local extrcma, of the orthogonal wavelet coe~cicnts, instead
of the coe~cients themselves (Mallat & Zhong 1990, 1991). They have
Mso shown that it is possible to have a unique and complete reconstruction
of the signal from the local cxtrcma alone, due to the reproducing kernel
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property (Section 3.2) of the wavelet transform; however this assertion 
not true for all functions as Meyer (personal communication) has recently
proved.

MULTIRESOLUTION ANALYSIS If we want to generalize the wavelet trans-
form to decompose any function or distribution j(x) whatever its decay
at infinity, we must use, in addition to the analyzing wavelet 0, another
function ~b, called the "wavelets’s father" or "scaling function," such that

f -~ d~(x) dx = 1,

(34)

where

~bj~ = U/2~b(2Jx- i) is orthogonal to 4’j’r forj’ > j and Vi’, (35)

It has been proven (Mallat 1989b) that ~bjk is orthogonal to all its discrete
translates.

Consequently the decomposition off(x) becomes:

f(x)= (Ooilf)c~oi(X)+ ~ (0~i [f)0~,(x). (36)
i=--ov j=O i= oo

The first sum is a smooth approximation of f(x) at the largest scale
/max = 2o = 1, while the second sum corresponds to the addition of details
of scale l = 2-~, je[0, + c~]. The function ~0 is a low-pass filter, while ~.j
constitutes a set of orthogonal higher and higher pass filters. This
approach, also called multiresolution analysis, is appropriate for analyzing
functions which are not in LZ(R). Take for example f(x) -= 1, which is
not square integrable (Meyer 1990a). We then have (q~0~[f)= 1 

(0~i[f) = 0, from which we reconstruct f(x)= 1; this reconstruction
would have been wrong if we had only used the wavelet ~ without the
smoothing function qS, such as in Equation (32).

The elegance of the multiresolution analysis comes from the fact that
the scaling functions q~i generate a set of nested subspaces V0 c Vlc ...
V~ c V~+l . . . while the associated wavelets 0j~ constitute their ortho-
gonal complementary subspaces W0, W~ . . . Wj, W~+~ . . . such that
V~+I = V~ ® W~ (Figure 4b). The inclusion Vj = Vj+ ~ corresponds to 
mesh refinement by a factor of 2:

f(x)e V~.~ f(Zx)e V~+ (37)

This indicates that the approximation off(x) at scale (~+ I) is

fJ+ I(X) = E ((~(J+ l)/]/)qg~+ (38)
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and contains all the necessary information to compute the same signal at
the larger scale 2 J. When computing an approximation off(x) at scale
2-j, some informationf is lost, but as the scale decreases to 2 ~ --- 0 the
approximated signal converges to f(x). Conversely, as the scale increases
to l = ~ the approximated signal contains less and less information and
converges to zero.

Vj is the set of all possible approximations at scale l = 2-j of functions
in L2(R). Among all approximated functions at scale ! = -j, f (x) i s
the function that is the closest in L2-norm to f(x). Therefore the wavelet
decomposition is an orthogonal projection on the vector space V~.

All the smooth approximations~(x) at scalej off(x) belong to Vj, while
all the additional details~.(x) necessary at scalej to exactly recover~+ ~(x)
at scale j+ 1 belongs to W~:

f~+~ (x) = f~(x) +j~(x). (39)

Recursively we obtain the reconstruction formula

f(x) =f0(x)+ Z ~.(x), (40)
j=0

which corresponds to the decompositionL2(a) = ° wj.
(41)

MAT.~,T AL~Or~TUr~ An additional simplification introduced by Mallat
(Mallat 1989a-d) allows the computation of the scaling function q~ from
a discrete filter F~, similar to the Quadrature Mirror Filters used in signal
coding (Esteban & Galand 1977, Rioul 1991). This filter 0 comes from
the space inclusion V0 = V~ which implies

q~(k) =F~ ~ ~ ~ with ~’~(k)-= 2-’/~F4~(Oe,/~ (42)

and therefore recursively for all Vj c V~+ ~,

~(k) = 1-I/0~(2-~k)¯ (43)

The filter ~’~ is 2r~ periodic and satisfies:

f~(0) = 1 to ensure L~-norm normalization,

F~(i --, c~) = (9(i -~) in order for q~ to decay at infinity,

IP~(k)l~÷ IP6(k÷ ~-- 1

in order for/6~ to be a conjugate filter. (44)
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The smoothness of the scaling function ~b and its asymptotic decay at
infinity can be estimated from the properties of P~(k).

For instance, we can characterize the Meyer orthogonal wavelets by
their associated discrete filters:

1

~(k) 0 < fie(k) _< 

0

[/~,(k) 12 + 1~(1 - k)12 

with

and

if0 _< Ikl -< ~

< Ikl < ~- (45)if~
2re

2~
iflkl _>-

3

Yk

~(k) = 

~(k) + ~(z- k) 

~(k) = 

if0 < Ikl ~ ~

if~ 2~

2r~
iflk[ _>-

3

a(k) = a(- Yk.

Meyer wavelets are very regular (C~) but not very well localized in physical
space. Their decrease at infinity depends on the smoothness of function
a(k); if a is ~, the associated Meyer wavelet will h ave afast decay. There
are other orthogonal wavelets, based on spline functions of order m, which
are better localized, with an exponential decay, but which are consequently
less regular, only Cm- ~; this is the case for instance with the Battle-Lemari~
wavelets (Figure 5a).

The Mallat algorithm implies the existence of another discrete filter F~
associated with the wavelet ~b and in quadrature with F¢, namely such that
the filter F, associated with the scaling function q~ is a low-pass filter,
while the filter F~ associated with the wavelet ~b is a band-pass filter (Figure
4b).

We can then compute the scaling function q~ and its associated wavelet
~b from the discrete filter F, alone:
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~b(x) = ~F~(i)~(2x-/)
i

~(x) = ~ F~(i)~(2x- 
i

with

F~,(i) = (- 1)~-’F~(1 (46)

In practice, to compute the wavelet transform it is only necessary to know
the coefficients of the discrete filter F,(0 because, due to the quadrature
condition, F~,(i) is deduced from F,(0 as in Equation (46).

The algorithm (explained in detail in Mallat 1989a, Daubechies 1989,
M6neveau 1991 a) then consists of a pyramidal succession of discrete con-
volutions of the signal f discretized into I = 2J samples (Figure 4c), first
with F, to compute the coefficients ~ describing the large-scale behavior
of f up to the scale l = 2-j, and secondly with F, to compute the wavelet
coefficients~ describing the behavior of f around the scale l, such as

i’

J~.i = Z F~(i’- 2i)J~._ ,.i,. (47)

This algorithm is pyramidal in the sense that, scale after scale and from
the small scales to the large scales, we undersample the signal by taking
one sample out of every two smaller scale samples; therefore the number
of wavelet coefficients is divided by two at each scale. Finally, due to the
orthogonality of the wavelet transform, we obtain the same number I of
wavelet coefficients as the number of samples of the signal. From those
wavelet coefficients f0, ~0 ̄  ¯ ¯ ~, we can then reconstruct a discrete
approximation of the signal at a given scale 2-J, by the same succession of
convolutions with F~ and Fq,, scale after scale but now going from the
large scales to the scale 2-.j. Traversing down the pyramid, we must now
oversample the wavelet coefficients by inserting a zero between successive
coefficients, scale after scale. To finally obtain the discrete approximation
at scale 2 J’, we add, following Equation (36), both results, f;_ ~ obtained
from F~ andj~_ ~ obtained from F~,. For both analysis and reconstruction
the operation count of the Mallat algorithm varies as I log~ L

As for the continuous wavelet transform algorithm (Section 3.3), 
should beware of boundary effects; these are discussed for instance in
M~neveau (1991a). We may also prefer to use periodic orthogonal
wavelets, for which a fast algorithm similar to Mallat’s has been developed
by Perrier (Perrier & Basdevant 1989), or to use the new orthogonal
wavelet bases proposed by Jaffard & Meyer (1989) which vanish on the
boundaries, but for which there does not yet exist any fast algorithm.
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Fiyure 5 Examples of scaling functions ~b and associated wavelets ~J commonly used for
the orthogonal wavelet transform. We visualize qS(x), q~(k), ~b(x), and ~(k). (a) 
Lemari~ wavelet constructed with 4th order spline functions, (b) Daubechies compactly
supported wavelet for N = 2, (c) Daubechies compactly supported wavelet for N = 
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COMPACTLY SUPPORTED WAVELETS Using Mallat’s procedure (43), Dau-
bechies has constructed several compactly supported and regular wavelet
bases (Daubechies 1988, 1989). She showed that ~b and ~b are compactly
supported if

(2N- 1 )! ~’~ 2N- l
[_,g’,(k) 12 = 2 (N_ 1)!22_ sin dx.X (48)

The size of the discrete wavelet support is given by 2N- 1 and depends on
the desired regularity m of the wavelet because N _> m + 1 (Figures 5b,c).

The case N = 1 is the Haar basis which is not regular. But for N # 1
we obtain many orthogonal interpolation bases ~bN and their associated
orthogonal wavelet bases $s which are continuous and differentiable until
order m >_ N/5. For example in the case N = 2 (Figure 5b), the discrete
filter which generates the corresponding Daubechies basis is

1 ÷.,/~ 3÷~/~
F,~(0)- 4,/~ Fo(1)-

4~

F,(2) -- 3 -- 
1 -- ~

4~ F,(3) - 4~ F,(i~]- ~, -- 1] w [4, + m[) = 0.
(49)

The numerical implementation of the orthogonal wavelet transfo~ with
Daubechies’ wavelets is carried out using the Mallat algorithm. Using
compactly supported wavelets the operation count, for both analysis and
synthesis, then varies as g which is therefore faster than the Fast Fourier
Transform.

PERIODIC ORTHOGONAL WAVELETS The extension of the multiresolution
analysis to the case of periodic wavelets was proposed by Meyer (1986)
and performed by Pettier and Basdevant who applied it to build ortho-
gonal wavelet bases from periodic spline functions (Pettier & Basdevant
1989). The extension of the multiresolution analysis to manifolds such as
the sphere is difficult. For instance the sphere does not have the dilation
and rotation invariance of the plane. Recently Jaffard has constructed
orthogonal wavelet bases adapted to spherical geometries (Jaffard 1990a,
Jaffard & Meyer 1989).

BIORTHOGONAL WAVELETS At first glance Daubechies wavelets look
strange: They are not symmetric (Figures 5b,c) and for N < 2 they
are left differentiable but not right differentiable (Figure 5b). Recently
Vetterli and Herley have designed some biorthogonal systems of compactly
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supported symmetric wavelets built from linear phase filters (Vetterli 
Herley 1990a-c). The use of biorthogonal wavelets constitutes a new
approach initially proposed in the context of the continuous wavelet trans-
form by Tchamitchian (1986, 1987), and then in the context of the ortho-
gonal wavelet transform by Cohen, Daubechies, and Feauveau (Feauveau
1989, 1990; Cohen et al 1990; Cohen 1990). It replaces the wavelet $ by 
pair of wavelets, one used for the analysis and the other used for the
reconstruction. Biorthogonal wavelets are very promising because they
offer much more flexibility in the choice of wavelet than orthogonal wave-
lets. We can, for instance, choose the properties of both wavelets to be
complementary, with high-order cancellations for the analyzing wavelet
and good regularity for the synthesizing wavelet.

N-DIMENSIONAL ORTHOGONAL WAVELETS In contrast to the continuous
wavelet transform we do not yet know how to compute an orthosonal

wavelet transform using an intrinsically n-dimensional wavelet, but it is
certainly feasible. We are presently left with a partially satisfactory
solution, namely that of separating the orthogonal wavelet transform of
a n-dimensional field into n orthogonal wavelet transforms performed in
each spatial direction. This variable separation approach, which can also
be used for the continuous wavelet transform, is therefore intrinsically
anisotropic and requires 2"- 1 wavelets.

For instance, to obtain a two-dimensional multiresolution analysis we
start from a one-dimensional multiresolution analysis, defined by the scal-
ing function ~b, from which we deduce its associated wavelet $. Then by
tensor products we obtain the two-dimensional scaling function

q~(xl, x~) = q~(x0~(x2) (50)
and the associated wavelets

I//I(X,, X2) 

[//2(Xl, X2) 

~0~(x~, x2) 
This is the approach used to extend the Mallat orthogonal wavelet algo-
rithm to two dimensions (Mallat 1988) and to three dimensions (Meneveau
1991a).

4.3 Wavelet Packets

Very recently, motivated by data compression problems, Coifman, Meyer,
and Wickerhauser have defined and catalogued an extensive "library" of
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functions they called "wavelet packets," from which can be built a count-
able infinity of orthogonal bases of L2(R) (Coifman et al 1990a,b; Wicker-
hauser 1991). The infinitely many bases of wavelet packets unify Gabor
wave packets [used in the Windowed Fourier Transform (Gabor 1946)]
and wavelets into a set of localized oscillating functions of zero-mean
parametrized by scale l, space x, and frequency k: l corresponds to the
width of their spatial support, x to the position of their center, and k to
the number of oscillations in their spatial support. A wavelet packet family
is thus generated by dilation, translation, and modulation of a "mother
wavelet." The different transforms (Figure 1) can be seen as the con-
volution of a given signal to be analyzed with a bank of filters given by
the analyzing functions: filters of constant bandwidth Ak for the Windowed
Fourier Transform or filters of constant ratio of width to center frequency
k for the Wavelet Transform (5). The Wavelet Packets Transform in fact
combines these two approaches and offers the possibility to adjust the
ratio Ak/k of the analyzing functions to the signal to be analyzed.

In the discrete case Coifman and Meyer have derived analytic formulas
to generate the 2~ wavelet packets associated with a signal sampled on I
points. Their wavelet packets are given as a set of I log21 vectors organized
into a binary tree, which drastically facilitates further computations. Then
for a given signal, or for each portion of it after performing an appropriate
segmentation, one can choose the most appropriate orthogonal basis to
decompose it. Wickerhauser proposes to select the basis that minimizes
the information entropy or the number of bits necessary to code the
information content of the signal (Wickerhauser 1991, Coifman et al 1990b).
In practice the best basis will be that which minimizes the number of
significant (that is above a certain threshold) coefficients. Therefore the
wavelet packet transform of a signal of length I gives at most I coefficients
(in general many fewer) from which the signal can be resynthesized. The
analysis requires I log2 I operations and the synthesis I operations. The
wavelet packet decomposition gives orthogonal bases quite similar to those
obtained with the Karhunen-Lo6ve decomposition, or Proper Ortho-
normal decomposition (Lumley 1981, Aubry et al 1988), but its computing
cost is much less; indeed the Karhunen-Lo6ve decomposition requires
the computation of the eigenfunctions of the correlation matrix, which
contains 13 coefficients.

Torr6sani has proposed a generalization of the wavelet packet transform
to the continuous case in which the wavelet packets are indexed by a
continuous parameter (Torr6sani 1991). The wavelet transform in fact
adapts the tiling of the phase-space (Figure 1) to each portion of the
signal. For instance, in regions dominated by harmonic behavior it will
choose the most appropriate Gabor wave packet basis (Figure 1 e), while 

www.annualreviews.org/aronline
Annual Reviews

http://www.annualreviews.org/aronline


WAVELET TRANSFORMS 429

regions with strong transients or shocks it will choose the most appropriate
wavelet basis (Figure ld). Another construction which involves wavelet
packets with discrete scale parameters and continuous translation pa-
rameters has recently been proposed by Duval-Destin et al (1991).

5. WAVELET APPLICATIONS TO TURBULENCE

5.1 Energy Decomposition

A very common pitfall when using any kind of transform is to forget the
presence of the analyzing function in the transformed field, which may
lead to severe misinterpretations, the structure of the analyzing function
being interpreted as characteristic of the phenomena under study. To
reduce this risk we should choose the analyzing function in accordance
to the intrinsic structure of the field to be analyzed. For instance the
trigonometric functions used in the Fourier transform would be the appro-
priate tool if and only if a turbulent flow field were a superposition of
waves; only in this case are wavenumbers well defined and the Fourier
energy spectrum meaningful for describing and modeling turbulence. If,
on the contrary, turbulence were a superposition of point vortices then the
Fourier spectrum in this case would be meaningless. The problem we still
face in turbulence theory is that we have not yet identified the typical
"objects" that compose a turbulent field. Before developing a turbulence
model we must identify these elementary "objects" and catalog their
elementary interactions. For instance the cascade models (Desnjanski 
Novikov 1974, Kraichnan 1974, Frisch & Sulem 1975, Bell & Nelkin 1978,
Gledzer et al 1981) assume that wavenumber octaves are the elementary
objects needed to describe homogeneous turbulence and that their inter-
actions consist of exchanging energy with the neighboring octaves.

The first step toward modeling turbulence is to find an appropriate
segmentation of the energy density in x- l phase space (Figure 1) and 
define some kind of phase-space "atoms" among which energy, or any
other dynamically relevant quantity, is distributed and exchanged by the
turbulent flow dynamics. If a turbulent field is a superposition of waves,
the energy density should be distributed in phase space among horizontal
bands, each band corresponding to an excited wavenumber (Figures 2b,c).
If a turbulent field is a set of localized structures--often called coherent
structures--the energy density should be distributed among cone-like
patterns, each cone pointing to an excited structure (Figure 2a). If 
turbulent field is a superposition of wavepackets, such as Tennekes and
Lumley’s eddies (Tennekes & Lumley 1972), the energy density should 
distributed among patches whose horizontal length will correspond to the
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spatial support and vertical length to the bandwidth characterizing each
excited wavepacket. If a turbulent field is mainly some kind of noise,
its energy density should be randomly distributed in both space and
scale without presenting any characteristic pattern in phase space (Figure
2c). Actually a turbulent field may well be the superposition of dif-
ferent phase-space structures which can be separated into characteristic
classes. In this case it will be more appropriate to decompose the flow field
into those classes and then perform separate ensemble or time averages,
class by class, in order to retain as much dynamically meaningful infor-
mation as possible on the flow. Another solution is to perform the aver-
aging directly in phase space, which presents the advantage of being able
to add together experimental data of different signal-to-noise ratios or
numerical fields computed at different resolutions. It also may well be
that different types of turbulence (e.g. boundary layer, mixing layer, grid
turbulence...) or different regimes (e.g. transition, fully-developed tur-
bulence), will lead to different segmentations of phase space; this should
be checked and, if it is the case, we should probably abandon the quest
for a universal theory of turbulence.

Finally we should study how the turbulent dynamics transports these
space-scale "atoms," distorts them, and exchanges their energy during the
flow evolution. Using a space-scale representation it would then be easy
to verify whether energy transfers are either mainly local in scale--as
assumed by the cascade models--corresponding to vertical translations in
phase-space, or whether energy transfers are instead local in space--as
assumed by point vortex models--corresponding to horizontal trans-
lations in phase-space. Energy transfers may in fact be local in both space
and scale, which is probably the right answer. Wavelets or wavelet packets
are certainly good candidates for performing this energy decomposition
in phase space and for finding possible phase-space atoms to characteriz~
the turbulent flow dynamics and hence to formulate new turbulence
models.

5.2 New Diagnostics for Turbulence

Before discussing the actual applications of wavelets to turbulence, let us
emphasize two points. First of all, wavelets are useful as a new diagnostic
tool for the study of turbulence if we want to retain some information
about the spatial structure of the flow. If we are only interested in its
frequency content, or if we want to filter it everywhere in space, wavelets
are not helpful, and the Fourier transform is a sufficient tool. Secondly,
we should always bear in mind the fact that wavelets see signal variations
but are blind to constant and other global polynomial behavior, according
to the number of cancellations (Section 3.2) of the analyzing wavelet. 
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common pitfall in interpreting wavelet coefficients is to link their strength
to the signal’s strength, whereas they actually correspond to variations in
the signal at a given scale and a given point. If the signal does not oscillate
at a certain scale and position, then the corresponding wavelet coefficients
are zero.

For the purpose of analysis we prefer to use the continuous wavelet
transform whose redundancy allows an unfolding of the flow information
on the space-scale complete grid, as opposed to the dyadic grid used for
orthogonal wavelets. As we have already said (Section 3.3), we strongly
advise using a progressive complex-valued wavelet, because, due to the
quadrature between the real and imaginary parts of the wavelet, we can
then eliminate spurious oscillations of the wavelet coefficients by visual-
izing their modulus, instead of their real part (Figure 2). If we analyze 
two-dimensional field using a two-dimensional wavelet we have at least a
three-dimensional coefficient space to visualize. If the coefficients are real
and therefore oscillate at all scales and locations, their graphical repre-
sentation is very complicated and difficult to interpret, whereas the modu-
lus only follows the signal energy density variations without presenting
spurious oscillations.

The squared wavelet coefficient If(l, x, 0) ]2 measures the energy level, or
excitation, of a given field f(x) in terms of space, scale, and direction. Let
us consider the case of three-dimensional turbulence and analyze three-
dimensional fields in terms of three space dimensions x -- x, and three
angles 0 = 0,, for n = 1 to 3. By choosing an isotropic wavelet, or averaging
over directions, we can discard the angular selectivity of this analysis. This
is what we shall do from now on in order to simplify the notation. We will
now list several new diagnostics, for two (n = 2) or three (n = 3) dimen-
sional turbulence, all based on wavelet coefficients.

LOCAL WAVELET ENERGY SPECTRUM First of all the notion of "local
spectrum" is antinomic and paradoxical when we consider the spectrum
as a decomposition in terms of wavenumbers for, as we have previously
said, they cannot be defined locally. Therefore a "local Fourier spectrum"
is nonsensical because, either it is non-Fourier, or it is nonlocal. There is
no paradox if instead we think in terms of scales rather than wavenumbers.

Using the wavelet transform, let us define the space-scale energy density:

If(/,x)l2
E(I, x) - l" (51)

As proposed by Moret-Bailly et al (1991) in the context of turbulence, the
scale decomposition in the vicinity of location x0 is given by
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Ez(l, x0) = l 1 n E(l, x)z~j x, (52)

Z being a function of finite support [xl, x2], which takes into account all
coefficients inside the influence cone (Section 3.2) of x0, such that:

fz(x) dnx = (53)

If we choose the window Z to be a Dirac function, then the local wavelet
energy spectrum becomes

If(/,x0)l2
E~(t, x0) r (54)

By integrating (51) we obtain the local energy density:

fo
+~

dl
E(x) = C~’+ E(l,x) (55)

GLOBAL WAVELET ENERGY SPECTRUMThe global wavelet spectrum is

Eft) = f~ Eft, ~) d~x. (~6)

It can also be expressed in terms of the Fourier energy spectrum
E(k) = If(k)[ 2 using relation (7):

E(l) ~ E(k) l~ (/k)[ 2 d~k. (57)

This shows that the global wavelet energy spectrum corresponds to the
Fourier energy spectrum smoothed by the wavelet spectrum at each scale.

We can then recover the total energy of the fieldf(x):

~ = C;~ ~(07.

LOCAL INTERMITTENCY ~AS~E To measure intermittency, namely the
fact that energy at a given scale may not be evenly distributed in space,
Farge et al (1990) have defined the intermittency measure:

If(/,x)]2
~(~, x) = (If(l, x) (59)

I(l, x) = 1, Vx and Vl, means that there is no flow intermittency, i.e. that
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each location has the same energy spectrum, which then corresponds to
the Fourier energy spectrum. I(l, x0) -- 10 means that the point x0 con-
tributes 10 times more than the average over x to the Fourier energy
spectrum at scale I.

Frick & Mikishev (1990) had previously defined a similar intermittency
measure using the Zimin hierarchical model (Zimin 1981).

SPACE-SCALE REYNOLDS NUMBER AND GLOBAL INTERMITTENCY MEASURE

Farge et al (1990b) have introduced a space-scale Reynolds number

~(l, x) 
Re (l, x) , (60)

where v is the kinematic viscosity of the fluid and g the characteristic rms
velocity at scale l and location x such as:

f(l,x) = (3C0)-I ~ [~7,(l,x)[ 2 . (61)

At large scales 1 ~ L,

.Re (L) = Re (L, x) 
co

coincides with the usual large-scale Reynolds number Re = v’L/v, where
v" is the rms turbulent velocity and L the integral scale of the flow. At the
Kolmogorov scale l ~ r/, where dissipation effects equilibrate nonlinear
effects, Re(r/, x)= 1. In plotting the iso-surface Ref/,x)= 1 we can then
check whether it is fiat or not. If it is flat, then 1 = r/ everywhere, as
assumed by Kolmogorov’s theory. If it is not flat, then the turbulent flow is
intermittent and we can no longer define a unique Kolmogorov scale
but only a range of scales from r/rain to r/~-~x" The ratio /(Re) = r/max/r/rain,

for Re = 1, is a global measure of the flow intermittency in the dissipative
range. The ratio/(Re) lmax(Re)/lmin(Re), for Re>> 1, measures theglobal
flow intermittency in the inertial range.

For direct numerical simulations of turbulent flow, this iso-surface
Re(l, x) = 1 may be useful in detecting numerical errors and verifying 
the space resolution Ax is sufficient to resolve the dissipative scales every-
where in the flow. We have to verify that r/rain > AX everywhere in the flow,
otherwise for points where this inequality is not verified some numerical
instability may develop.

For numerical simulations we can define a better space-scale Reynolds
number. For this we must compute the nonlinear term N = II v o Vv II and

www.annualreviews.org/aronline
Annual Reviews

http://www.annualreviews.org/aronline


434 FARGE

the dissipative term D = ]] v" V2v][ and expand them into their wavelet
coefficients to obtain

Re(l, x) =/~(l, x)//~(l, (62)

SPACE-SCALE CONTRAST If we want to detect any variation in the signal,
even for regions where the signal becomes very weak, Duval-Destin and
Torrrsani (Duval-Destin & Menu 1989; Antoine et al 1990, 1991; Duval-
Destin et al 1991; Antoine & Duval-Destin 1991) have proposed the
contrast measure

cq, x) If(t,
- If(l, x) 2’ (63)

with

f(l,x) = ~l/-(n+l) f(l’,x)dl’.
dl,=0+

For orthogonal wavelets the contrast has the very elegant form

(64)

~Oji being the orthogonal wavelets, at scale j and location i, and ~bji the
associated scaling functions.

While wavelet coefficients locally measure the signal derivative, the
space-scale contrast measures its logarithmic derivative. This diagnostic
may be useful in fluid mechanics for detecting some very weak coherent
structures, or some coherent structures embedded in larger ones--two
cases that cannot be detected by the classical threshold method. In any
case wavelets are better adapted to filtering or segmenting flow fields than
traditional image processing techniques; most image processing techniques
are based on contour detection developed for pattern recognition, whereas
coherent structures encountered in fluid flows do not have sharp contours
but instead are characterized by their local scaling. A similar problem is
encountered in analyzing astronomical images, in particular in detecting
galaxies, for which wavelets are now extensively used (Bijaoui 1991).

SPACE-SCALE ANISOTROPY MEASURE The measure of the space-scale depar-
ture from isotropy is given by
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A(l, 0) = + ~o " (65)

For this diagnostic we obviously must use a directional wavelet such as
the Morlet wavelet (Section 3.3).

If A(l,O) = 1, ¥l and ~’0, the flow is isotropic at all scales.
If A(/min, 0) A(lma,, 0), V0, with/min a small scale and lmax a large scale,

there is a return to isotropy in the small scales.
A(l, ~o) 10means that dir ection ~0 contributes 10 times more than the

average over 0 to the Fourier energy spectrum at scale l.

LOCAL SCALING AND SINGULARITY SPECTRUM As we have said in Section
3.2, the continuous wavelet transform with L~-norm (19) is used to study
the local scaling of a function and to detect its possible singularities. But
to see singularities, we must subtract the Taylor series of the signal, which
corresponds to its polynomial, and therefore differentiable, terms. This
subtraction is automatic if we choose a wavelet with sufficiently many
cancellations (Section 2.2 and 3.1) to be blind to these polynomial con-
tributions. Here again a complex-valued wavelet is preferable. To justify
this choice, let us take as a counterexample the analysis of a singularity
Ix-x01~, 0 < ~ < 1, located at x0, using a real-valued wavelet. If the
singularity is odd and the wavelet even, or vice-versa, then the small-scale
wavelet coefficients will be zero at x0 and we will not see the singularity,
for it has been cancelled by the signal’s, or wavelet’s, zero-crossings. If we
choose a progressive complex-valued wavelet, whether odd or even, the
L L-modulus of the wavelet coefficients will drastically increase in the small
scales around the location x0 and the rate of increase will give the exponent
of the singularity. The local scaling off(x) at x0 is given by the scaling 
the wavelet coefficients’ Lt-modulus in x0 in the limit of asymptotically
small scales, l -~ 0. This property has been used by Tchamitchian & Hol-
schneider (1989, 1990) to study the local regularity of the Riemann func-
tion: they have demonstrated that the Riemann function is differentiable
on a dense set of points and is singular everywhere else.

To compute the singularity spectrum, we should proceed as follows.
First, we plot the phase of the wavelet coefficients to locate singularities--
for the iso-phase lines will point towards singular points. Second, we
should verify that the singular point detected at x0 is isolated, namely that

f(l ~ 0, x0) < f(l -~ 0, x0 + a), with l al very small. (66)
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Then the exponent ~(x0) of the singularity is given by the slope of the local
scaling of log If(l, x0)l for l-~ 0, f being written in Lt-norm (19). 
singularity spectrum has been used tO characterize fractal and multi-fractal
measures (Arn6odo et al 1988, 1989; Arn6odo et al 1990; Arn6odo et al
1991), and its generalization to fractal and multi-fractal functions has been
recently made by Muzy et al (1991). Using a real-valued wavelet, Bacry 
al (1991) first extract the wavelet coefficients "skeleton," i.e. the location
of the local maxima of the wavelet coefficients, before computing the local
scaling. Benzi & Vergassola (1991) proposed a procedure, called "the
optimal wavelet transform," to reduce possible oscillations of If(l, x0)l
versus log 1 while using a real-valued wavelet. This procedure is com-
putationally intensive and has been recently improved by using a pro-
gressive complex-valued wavelet (Morlet) instead of a real-valued one
(Benzi & Vergassola 1991).

5.3 Some Preliminary Results Usint7 Wavelets

voR Tt~RBt~LEr~¢~ ANALYSIS Wavelet analysis of turbulent flows is at
present developing rapidly in many different directions. As a consequence,
! cannot detail and discuss all published papers on this subject, thus will
only list those I know of, so that the reader may have access to them.
As noted in the introduction, most of these papers have an exploratory
character and their conclusions may not yet be definitive. They do have
the merit of clarifying the concepts inherited from the Fourier spectral
approach, of asking new questions, and of introducing new points of view
concerning our understanding of turbulence.

To my knowledge, the wavelet transform was first used in fluid mech-
anics by Saracco and Tchamitchian in a study of the propagation of
transient acoustic signals in inhomogeneous media (Saracco & Tcha-
mitchian 1988, Saracco et al 1989). In the context of turbulence, wavelets
were first used by Farge and Rabreau to analyze two-dimensional homo-
geneous turbulent flows obtained from numerical simulations, using first
a one-dimensional Morlet wavelet (Farge & Rabreau 1988a,b; Farge 
Sadourny 1989) and then a two-dimensional Morlet wavelet (Farge 
Holschneider 1989, Farge et al 1990a, Farge 1990). They showed that
during the flow evolution, starting from a random distribution of vorticity
with a k- 3 energy spectrum, the small scales of the vorticity field become
increasingly localized in physical space (Figure 6). This suggested an inter-
mittency of the two-dimensional turbulence dynamics, which may be
related to a condensation of the vorticity field into vortex-like coherent
structures. In particular they found that the smallest scales of the vorticity
field are concentrated inside some vortex cores (Figures 7, 8) and are
generated when and where two same-sign coherent structures are merging
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(Farge et a 9 9 0 a ) .  From this observation, Farge and Holschneider pro- 
posed a new, purely geometrical, interpretation of the k4 cnergy spectrum 
observed for numerically computed two-dimensional turbulent flows, 
based on the existence of cusp-like axisymmetric coherent structures with 
a scaling exponent of -1/2 (Farge & Holschneider 1991). Such quasi- 
singular coherent structures are scaling distributions of vorticity which 
exhibit, instead of a characteristic radius, a range of radii corresponding 
to all scales of the inertial range, until the dissipative scales where the 
vortex cores are smoothed. These cusp-like coherent structures are also 
characterized by a nonlinear pointwise relation between vorticity and 
streamfunction, similar to coherent structures experimentally observed in 
a two-dimensional turbulent mercury flow (Nguyen Duc & Sommeria 
1988). Farge and Holschneider have conjectured that those quasi-singular 
vortices are created by the condensation of the vorticity field around quasi- 
singularities already present in the initial conditions (Farge & Holschneider 
1991). They have also shown that coherent structures with a scaling 
exponent of - 1/2 are stable under the two-dimensional Navier-Stokes 
dynamics, even when perturbed by strong noise, and these structures 
organize the random field in their vicinity by accreting the same-sign 
noise onto them (Farge et a1 1991a). Recently Benzi and Vergassola, by 
performing a wavelet analysis of a numerically computed two-dimensional 
homogeneous turbulent flow, have confirmed the existence of coherent 
structures with negative exponents, between -0.4 and -0.6, similar to 
the -0.5 scaling exponent predicted by Farge and Holschneider (Benzi 
& Vergassola 1991). 

The first wavelet analysis of an experimental turbulent signal was carried 
out by Argoul et al from the wind tunnel streamwise velocity measured at 
high Reynolds by Gagne and Hopfinger, using one-dimensional real- 
valued wavelets (Argoul et a1 1989, Arntodo et a1 1990, Bacry et a1 1991, 
Arnkodo et a1 1991). At about the same time, Liandrat, Moret-Bailly, and 
Tchamitchian, using a one-dimensional real-valued wavelet, studied the 
interaction between a shock wave and free turbulence, and then analyzed 
the streamwise velocity in a turbulent boundary layer near a heated wall 

L 

Figure 7 Two-dimensional continuous wavelet transform computed in the L'-norm, using 
the real-valued DOG (Difference of Gaussians) wavelet. The same two-dimensional turbulent 
flow (vorticity field sampled at 512' points) as in Figure 6 for n = IOs has been used. We 
visualize the wavelet coefficients (fefi) at: scale I = 8 A x  (top), scale I = 4 A x  (middle), scale 
1 = 2 A x  (bottom); where A x  is the mesh size. We then visualize the partial reconstructions 
of the vorticity field (right) from the wavelet coefficients, taking all coefficients up until: scale 
I = 8 A x  (top), scale I = 4 A x  (middle), scale I = 2 A x  (bottom). 
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%?Kre 8 Two-dimensional continuous wavelet transform computed in the L'-norm, using 
the complex-valued Morlet wavelct with (k,l = 5 and 0 = 0, of the same two-dimensional 
turbulent flow (vorticity field sampled on 512' points) as Figure 7. The black and white f igus 
illustrates the vorticity field to be analyzed. The color plate shows the wavelet coefficient 
modulus (color coded in the increasing order: blue, red, magenta, green, cyan, yellow, and 
W h i W  and phase (.qru,v ixu/;tw.y) mapped onto the vorticity field (in perspective representdon) 
at: scale I = 32 Ax (lop) and scale 1 = 16 Ax (botrom). (From Farge et a1 1990a.) 

in order to compare both wavelet and VITA (Variable Interval Time 
Averaging) techniques (Liandrat & Moret-Bailly 1990). They also used the 
wavelet transform to estimate the transition Reynolds number in a rotating 
disk boundary layer (Moret-BaiIIy et a1 1991). More recently Frisch and 
Vergassola have proposed a new type of averaging for turbulence analysis, 
namely a scale-averaging of the logarithm of the wavelet coefficients modu- 
lus, which, like time-averaging of stationary processes, reduces statistical 
fluctuations of self-similar random processes, provided there is a sufficient 
range of scales in the signal (Vergassola & Frisch 1990). In the study 
of stochastic processes and multiscale statistical signal processing, many 
developments are presently underway (Basseville & Benveniste 1989, 1990; 
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Benveniste 1990; Benveniste et al 1990; Flandrin 1988, 1990, 1991a,b;
Flandrin & Rioul 1990).

Although all the initial work [except Benzi & Vergassola (1991)] was
carried out in France, the wavelet transform has since gradually diffused
abroad. In Japan, Otaguro, Takagi, and Sato have used a one-dimensional
Marr wavelet (the Mexican hat) and other triangular functions (which 
not actually admissible wavelets) to search for patterns in a streamwise
velocity signal measured in a turbulent boundary layer (Otaguro et al
1989). Using a one-dimensional orthogonal wavelet, Yamada and Okhi-
tani analyzed data from atmospheric turbulence (Yamada & Ohkitani
1990a,b). In the United States, Everson and Sirovich, using different one-
dimensional real-valued wavelets, have computed the wavelet transform
of several types of Brownian motions and of several experimental measure-
ments: kinetic energy and Reynolds stress in the wake of a cylinder and in
a numerically computed mixing layer, and kinetic energy and kinetic
energy dissipation rate recorded in the atmospheric boundary layer (Ever-
son & Sirovich 1989). Using a two-dimensional Marr wavelet they have
also compared a k-z Brownian motion to the dye concentration data
measured by Sreenivasan in a turbulent jet at moderate Reynolds number
(Everson et al 1990).

Using tensor products of Battle-Lemari6 orthogonal wavelets, Mene-
veau has studied the energy intermittency in a wake behind a cylinder and
in a boundary layer. He then computed the transfer of kinetic energy and
the flux of kinetic energy through a given position and a given scale for a
variety of turbulent flows: in a numerically computed homogeneous shear
flow, and in an isotropic homogeneous turbulence numerical simulation
(Meneveau 1991a--c). He found, first, that those quantities have non-
Gaussian statistics and, secondly, that the local flux of energy coming from
the small scales exhibits a large spatial intermittency, and even locally
presents some inverse cascades. Dallard and Spedding--using the two-
dimensional Halo and Arc wavelets they introduced (Section 3.3)--have
analyzed Rayleigh-Brnard convection rolls and plane mixing layers in
order to detect, in both space and scale, possible phase defects of those
flows (Dallard & Spedding 1990).

Using a two-dimensional Morlet wavelet, Farge, Guezennec, Ho, and
Meneveau (Farge et al 1990b) analyzed different fields, such as velocity
components, vorticity components, and temperature, obtained from the
NASA-Ames direct numerical simulations, considering in particular the
turbulent channel flow computed by Kim and Moin and the temporally
evolving mixing layer computed by Rogers and Moser. They measured,
using the diagnostics defined in Section 5.2, a very strong space inter-
mittency in the small scales. They related it to the bursts ejected from the
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boundary layer of the channel flow and to the ribs (streamwise vortex
tubes) stretched and engulfed into the spanwise vortex cores in the case of
the mixing layer. Extrapolating the local scalings they found, and con-
sidering their strong variance from the Fourier spectrum, they conjectured
that the larger the Reynolds number the larger the degree of intermittency.
They have also observed a return to isotropy in the small scales for the
mixing layer, but not for the plane channel flow whose small scales remain
elongated in the streamwise direction. Finally, they found that the iso-
Reynolds manifold represented in space and scale (see Section 5.2) is not
flat, but presents peaks in the most unstable regions, particularly in the
spanwise vortex cores of the mixing layer.

Farge et al (Farge 1991c, Farge et al 1991c) have shown that the wavelet
packet bases are much more efficient than the Fourier basis to compress
two-dimensional turbulent flows. They define the "best basis" as the one
which condenses the L2-norm (energy or enstrophy) into a minimum
number of non-negligible wavelet packet coefficients. They have found
that the most significant coefficients of the best basis correspond to the
coherent structures, while the weakest coefficients, which can then be
discarded, correspond to the vorticity filaments (Figure 9). They have
then performed several numerical integrations initialized, either with a
noncompressed vorticity field (reference history), either with a vorticity
field compressed using the Fourier basis, or with a vorticity field com-
pressed using the best basis. For a compression ratio 1/2, done in the best
basis, the time evolution during 6000 time steps of the vorticity field
remains similar to the reference history, while if the compression ratio is
done in the Fourier basis, the deterministic predictability is lost and only
the spectral behavior remains similar. Then for compression ratios up to
1/200, done in the best basis, the deterministic predictability is lost but not
the statistical predictability, whereas the compression operated in Fourier
loses both. This confirms the fact, predicted among others by Farge (1990),
that the dynamically active entities of a two-dimensional turbulent flow
are the coherent structures, while the vorticity filaments are only passively
advected by them. Using the wavelet packet best basis the flow separation
into active versus passive components, or "master" versus "slave" modes,
is performed without assuming any hypothetical scale separation, as is
necessary when using the Fourier basis. In conclusion, the wavelet packet
best basis seems to distinguish the low-dimensional dynamically active
part of the flow (the coherent structures) from the high-dimensional passive
components (the vorticity filaments), which can then be neglected or para-
metrized. This gives us some hope of drastically reducing the number of
degrees of freedom necessary to compute two-dimensional turbulent flows.

To conclude this section on turbulence analysis using wavelets, I would
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Figure 9 Two-dimensional real wavelet packet transform computed in the L'-nom of the 
same two-dimensional turbulent flow (vorticity field sampled at  512' points) as in Figures 7 
and 8. We visualize: the vorticity field to be analyzed (top feft). We then visualize the partial 
reconstructions of the vorticity field from the wavelet packet coefficients, taking only the 
first: 10" most significant coefficients (top right), lo3 most significant coefficients (bottom 
kfr), 100 most significant coefficients (bottom right). (From Farge et a1 1991c.) 

like to quote the wise remarks of Otaguro et a1 (1989) as a reemphasis of 
what 1 have already said in Section 5.1 : 

It is important to notice that if we choose a particular wavelet, the resultant correlation 
pattern will obediently reflect the characteristics of the wavelet. The fact may be termed 
sensitivity to reference. Thus we have encountered an old issue in pattern search, 
arbitrariness of reference. There are two points to be mentioned in this context. The 
first one is that the sensitivity to reference should be utilized as much as possible so that 
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we can search any object in a chaotic field. The second one, which can be contradictory
to the first, however, is that we have chances to capture ghost patterns with no physical
significance. This danger has been repeatedly mentioned by many authors. The problem
is deeply related to our a priori knowledge about the turbulent field under test.

FOR TURBULENCE MODELING The goal of turbulence modeling using wave-
lets is to directly compute the time evolution of a turbulent flow in terms
of wavelet coefficients, instead &space variables. If the turbulent dynamics
is governed by some nonlinear cascades, then we should study them in
both space and scale, without assuming, for instance, any scale locality
of the transfers as is done for the so-called cascade turbulence models
(Desnjanski & Novikov 1974, Kraichnan 1974, Frisch & Sulem 1975, Bell
& Nelkin 1978, Gledzer et al 1981, Qian 1988). After writing Euler or
Navier-Stokes equations in wavelet space, the problem is then to define
the graph of possible interactions, to estimate their propagation speed in
phase space, and to ascertain if transfers are mainly local in space--
corresponding to horizontal shifts in phase space, local in scale--cor-
responding to vertical shifts, or local in both--if shifts operate along
diagonals. In studying the symmetries of the Euler or Navier-Stokes equa-
tions, and perhaps some variational principles, we might then learn which
kind of interactions dominate and which are forbidden. With this approach
to the modeling of turbulence, no statistical hypotheses are needed because
we directly study a set of algebraic equations obtained by projecting
Navier-Stokes or Euler equations onto an appropriate orthogonal basis.
In this case the whole endeavor will consist of truncating as much as
possible the number of algebraic equations retained in the turbulence

¯ model. As a first step in this direction, Meneveau (1991c) derived the three-
dimensional Navier-Stokes equation in wavelet space. His paper actually
focuses on turbulence analysis (see previous paragraph), but he mentions
that further developments of this formulation should concentrate on pos-
sible approximations to the interaction kernel, similar to the work of
Nakano (1988) who used a wave packet formulation.

In the same spirit (but before the wavelet theory of Morlet-Grossmann-
Meyer) extremely impressive work was carried out by Zimin starting in
1981 in Perm, Soviet Union (Zimin 1981). In his first paper, he projected
the three-dimensional Navier-Stokes equation onto a quasi-orthogonal
basis using functions that were localized in both space and scale. To
construct his basis he considered a hierarchy of eddies and assumed that
the small eddies were advected by the larger ones. This led him to segment
the phase space into cells of constant size corresponding to eddies whose
spatial support decreased with the scale, each eddy having a space-scale
resolution in accordance to the uncertainty principle. In fact the phase-
space segmentation of Zimin’s hierarchical basis is the same as for wavelets
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(Figure ld). After constructing hierarchical bases for three-, two-, and
one-dimensional flows (Zimin 1981, Frick 1983, Zimin et al 1986, Zimin
& Frick 1988, Frick & Zimin 1991), Zimin is presently generalizing them
to three dimensions plus time (Zimin 1990a,b) in order to be able 
compute the Navier-Stokes equation in a purely algebraic fashion. Since
1981 Zimin’s approach has been extensively used in more than 40 papers--
unfortunately most of them have not yet been translated from Russian.
Here I only briefly list some of those, translated into English, which use
the hierarchical basis for modeling or computing different types of tur-
bulent flows: two-dimensional flows (Frick 1983, Aristov et al 1989, Miki-
shev & Frick 1990), two-dimensional MHD flows (Frick 1984, Mikishev
& Frick 1989, Aristov & Frick 1990), rotating shallow-water flows (Aristov
& Frick 1988a, Aristov et al 1989), and different convective flows (Frick
1986a,b; Frick 1987; Aristov & Frick 1988b, 1989).

We should also mention a recent model of turbulence intermittency
(Farge & Holschneider 1991, Farge 1991b), differing from previous models
(Kolmogorov 1961, Mandelbrot 1974, Frisch et al 1978, Benzi et al 1984,
Parisi & Frisch 1985), which all refer to hypothetical stochastic processes
and often involve, for instance, eddy breaking. This new model proposes
a purely geometrical interpretation of intermittency: spatial intermittency,
for both two-dimensional and three-dimensional turbulent flows, may be
related to the quasi-singular shape of a few highly excited axisymmetric
coherent structures, which are produced by the flow dynamics. Due to
their cusp-like shape, these coherent structures do not have a characteristic
scale but instead present a range of scales. Moreover, their spatial support
decreases with scale and follows a power-law behavior before reaching the
dissipative scales where their cores are locally regularized by dissipation.
The spatial intermittency may then be explained by the geometry of those
cusp-like coherent structures. In addition Farge (1991b) supposes that
each coherent structure may have a different scaling law and may begin
to be dissipated at a different scale than the others, which would therefore
correspond to the different peaks observed on the dissipative manifold
Re(l, x) = 1 (see Farge et al 1990b). This conjecture seems consistent 
Castaing’s theory of turbulence (Castaing 1989, Castaing et al 1990),
which, contrary to Kolmogorov’s theory, assumes a possible weak dis-
sipation in the inertial range. It is also consistant with Frisch and Ver-
gassola’s multifractal model of a possible intermediate dissipative range
(Frisch & Vergassola 1990). It may be that this geometrical interpretation
of space intermittency, deduced from the wavelet analysis of two- and
three-dimensional turbulent flows (Farge & Rabreau 1988b, Farge et al
1990a,b) is wrong, resulting again from confusion between the scaling
properties of the wavelet family and those of the turbulent field. As I have
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previously said (Section 5.1), this is the most common pitfall encountered
with wavelets and we are not yet immunized against it.

FOR TURBULENCE COMPUTING The objective is to be able to reduce the
number of degrees of freedom necessary to compute the flow evolution,
in order to simulate high Reynolds number flows. As we said in Section
1, for Fourier spectral methods (Galerkin or pseudo-spectral) the number
of degrees of freedom varies as Re in dimension two and Re9/4 in dimen-
sion three; the direct numerical simulations, i.e. without any ad hoc subgrid
scale parametrization, are in this case limited to low Reynolds number
flows, even with the fastest supercomputers available today. Fourier spec-
tral methods are very precise if the flow remains regular. However, they
are no longer appropriate when the flow develops shocks or steep gradients
because solutions will then present some spurious oscillations everywhere
in the domain (Gibbs’ phenomenon). In this case we prefer to use finite
element methods, or finite differences which may be thought as a particular
case of finite element methods. In fact, wavelet bases are intermediate
between finite element bases (due to their space localization) and Fourier
bases (due to their scale localization). Now the point will be to use wavelets
to develop new numerical techniques which will combine the advantages
of both methods, while avoiding their inconveniences. Numerical methods
using wavelets are presently in a nascent state, but seem very promising in
the long term. For instance, in the case of partial differential equations,
only Burger’s equation in one dimension has been solved using wavelets
in two different ways, a wavelet Galerkin method and also a wavelet
particle technique.

To illustrate the principle of the wavelet Galerkin method, let us consider
the one-dimensional evolution equation

(67)
Lu(x, t = O) = Uo(X),

with A as a differential operator. We can project (70) onto an appropriate
multiresolution space l/" yielding

(I~ + A(u’)l ~b/=0, (68)

with ~ either the scaling function (Latto & Tenebaum 1990, Glowinski et
al 1990) or the wavelet associated to the chosen multiresolution (Liandrat
et al 1989, 1991; Liandrat & Tchamitchian 1990; Maday et al 1990; Pettier
1989, 1991a). For a multiresolution based on the discrete filter /~(k)
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(Section 4.2), the differentiation becomes very easy if we introduce a second
filter ~(k) which is the derivative of the first one, as proposed by Lemari~
(Perrier 1991b). The only problems arise from the nonlinear operators,
which presently must be computed in physical space at each time step, as
is done for pseudo-spectral methods. In the case of v’ Vv--the nonlinear
operator so important for turbulence--we can almost compute it directly
in wavelet space (Beylkin 1991). The advantage of a wavelet Galerkin
method, compared to Fourier, is that it uses the lacunarity of the wavelet
series and discards the wavelet coefficients below a certain threshold.
Depending on the problem, we can then drastically reduce the number of
degrees of freedom to compute. For instance, in the case of the one-
dimensional Burger’s equation with a weak dissipation, Perrier has shown
that 164 wavelet coefficients are sufficient to achieve the same precision of
the solution, e = 10-6, as with 1024 Fourier modes (Maday et al 1991;
Perrier 1991a,b). In addition, she observes no Gibbs’ phenomenon in the
velocity field away from the shock, as is the case with the Fourier Galerkin
method.

As we said in Section 5.1, turbulent flows may be thought of as a
superposition of point vortices. This is the basic assumption of vortex
numerical methods which is used for computing turbulent flows (Leonard
1985). In this case the solution is approximated as a finite sum of regu-
larized Dirac masses, which evolve in amplitude and position. The same
idea is behind the wavelet particle method, but in addition it allows the
elementary vortices, substituted for the Dirac masses, to be deformed and
therefore also to evolve in scale. The principle of the wavelet particle
method (Basdevant et al 1990) is to look for an approximate solution 
Equation (67), considered as a sum of a given number N of wavelet particles
q~n, or wavelet atoms, which evolve in phase space according to:

t
n~-lUn(t)~X--Xn(t)N

U(X, t) 
l.(t) - ~" V.(x, t).,= 1 (69)

kv.--
with l. > 0 and u., x. e R.

The double localization of waxielets in both space and scale ensures the
independence, in the L2 sense, of two wavelet particles ~. and ~m distant
enough in phase-space, namely for

l,._l >>0 and ~>>1. (70)

Therefore the time evolution of the solution of Equation (67) will cor-
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respond to the trajectories of the wavelet particles in phase space. In
regions where the solution is smooth there will be very few wavelet
particles, whereas they will concentrate dynamically in regions where the
solution may become singular. The wavelet particle method (also called
"ondelettes mobiles") consists, for each time step, of finding the set of
{U ...... u,, l~ ..... l,, Xl ..... x,} that minimizes the local residual from
Equation (67), where

(71)

We must therefore solve a linear system of 3N equations for Oun/Ot, Ol,/Ot,
and Ox,/Ot, which is well conditioned only if the different wavelet particles
remain sufficiently separated, How to handle wavelet-particle collisions is
still an open problem; some tentative solutions are discussed in Perrier
(1991a).

It is well-known that the importance of Fourier bases stems from the
fact that they diagonalize differential operators. Although such operators
lose this very simple form in a wavelet basis, due to the different frequencies
involved in the wavelet and required by its space localization, they have a
matrix realization that is almost diagonal (Meyer 1990a, Jaffard 1991d).
Beylkin, Coifman, and Rokhlin have developed a very efficient algorithm,
based on wavelets, which allows one to multiply a matrix by a vector very
efficiently. Thus this algorithm is useful for diagonalizing or inverting
certain classes of dense matrices, and is particularly appropriate to the
case of integral operators (Beylkin et al 1991a). It uses the fact that wavelet
coefficients decay rapidly in regions where the function is regular; after
projecting ~ onto an orthogonal wavelet basis and reordering the terms,
the BCR algorithm transforms ~¢ into a band matrix. For instance to
solve Y = ~¢X, to accuracy e, requires only C(e)" operations, wi th C
being a constant depending on the precision desired. This algorithm has
been used to invert dense matrices of more than 212 elements, which
would have been impossible in practice with any other method. Other
new algorithms, also based on wavelets, are presently being studied for
inverting elliptic operators (Tchamitchia’n 1989a,b; Jaffard 1990b).

All these numerical methods based on wavelets are in a very preliminary
phase and not yet ready to compute the Navier-Stokes or Euler equations.
But, as a first step, we can still numerically solve these equations with
other, more classical, algorithms and use wavelets only to locally filter the
solutions or detect the strong gradient regions (such as shocks) in order
to remesh the domain when and where it is necessary. Wavelets may also
be used to define some new ways of forcing the flow field, for instance to
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excite only a given coherent structure and not the whole domain as with
Fourier mode forcing. Finally, we can foresee using wavelets to develop
new variants of the Large Eddy Simulation techniques, where the scale
separation will no longer be defined in terms of Fourier wavenumbers, but
will be based on a separation between coherent structures (i.e. very excited
regions of wavelet phase space) which will be explicitly computed, while
the background flow (i.e. regions of weak wavelet coefficients) will only 
globally parameterized using some ad hoc model.

CONCLUSION

The present position of the founders of the wavelet theory--Morlet,
Grossmann and Meyer--is to control tlae enthusiasm of the newcomers,
who may overestimate the actual possibilities of the wavelet transform and
then create some backlash effect resulting from their disappointment. My
own view is that the wavelet transform is a very young technique which is
evolving at a very fast pace, and we therefore must first become accustomed
with it by performing extensive tests on well-known "academic signals" in
order to develop a feeling for it before defining applications for which it
will be useful.

We should also define some appropriate representations of the wavelet
space, which is then critical for the two- and three-dimensional wavelet
transform. We should develop a feel for the interpretation of wavelet
coefficients, in particular for better understanding of the meanings of the
modulus and phase in the case of complex-valued wavelets. In addition,
we should test many different wavelets to try to optimize the choice of
wavelet for a given problem. We should also find faster continuous wavelet
transform algorithms. In the context of turbulence, the wavelet transform
certainly opens some new possibilities, but we should not rely on it to solve
the problem by chance, lest we run the risk--as has already been the
case in this field--of misinterpreting the results by mistaking the scaling
behavior of the wavelet transform for the signal scaling. The wavelet
transform is a sophisticated tool and its use might be very fruitful for
the understanding of turbulence, if one is wise enough to first become
accustomed with it.

To conclude I quote Yves Meyer (Meyer 1990c):

Wavelets are fashionable and therefore excite curiosity and irritation. It is amazing that
wavelets have appeared, almost simultaneously in the beginning of the 80’s, as an
alternative to traditional Fourier analysis, in domains as diverse as speech analysis
and synthesis, signal coding for telecommunications, (low-level) information extraction
process performed by the retinian system, fully-developed turbulence analysis, renor-
realization in quantum field theory, functional spaces interpolation theory .... But this
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pretention for pluridisciplinarity can only be irritating, as are all "great syntheses" which
allow one to understand and explain everything. Will wavelets soon join "catastrophe
theory" or "fractals" in the bazaar of all-purpose systems? It seems to me that "wavelets"
have a slightly different position, since they do not constitute a theory but rather a new
scientific tool. Indeed, they have never been used to explain anything. When M. Farge
uses them to analyze turbulence simulation results, they play nearly the same role as the
pair of glasses I use to read the "Apologie de Raimond Sebond." These glasses, now
required by my age, should not be condemned if I do not understand Montaigne’s
thoughts, or glorified if I admire them. Likewise with wavelets whose modest, but
essential, role is to help us to better study, at different scales, complex phenomena.
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