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1. Introduction

5. Convergence to the  entropy solutions 6. Conclusion and perspectives
We have shown that the inviscid Burgers equation with CVS 
filtering at every timestep is equivalent to the viscous Burgers 
equation with a small viscosity. Both methods yield good 
approximations of the entropy solution. The CVS approximation 
is slightly better for long integration times.
The translation invariant complex wavelet transform plays a 
key role in the success of our method. We have not been able 
to reproduce these results using a real-valued orthogonal 
wavelet transform. Further investigation will be needed to fully 
understand this point.
In the future, we plan to apply this approach to other 
differential equations with singular non-dissipative limits, like 
the Navier-Stokes/Euler system. The CVS filter has already been 
applied in this context [2].

The initial value problem for the Burgers equation (1) with has a unique solution [1].
When  , this solution converges to a weak solution of (2), known as 'entropy solution' 
because it is characterized among all the weak solutions of (2) by an entropy condition. Although 
the viscosity is vanishing, the energy still decays due to the presence of negative jumps in the 
velocity, known as shocks.
A classical way of approximating this entropy solution numerically is to solve (1) with a 'small' 
viscosity. We compare this approach with an attempt to solve (2) directly, applying a nonlinear 
wavelet filter at every timestep. We check if the solutions thus obtained also converge to the 
entropy solution when numerical resolution increases.
To solve equations (1) and (2) numerically, we use a classical Fourier pseudo-spectral method, x being discretized on N equidistant gridpoints. 
One important point is that the nonlinear term is discretized in skew-symmetric form in order to ensure conservation of energy. We advance in 
time from t = 0 to t = 5, using the Runge-Kutta fourth order scheme. The timestep is 1/16 N, which has been chosen small enough so that there is 
virtually no numerical dissipation.
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2. Wavelet analysis of a viscous solution 

t = 0 t = 0.5 t = 2

We analyze the behaviour of the reference viscous solution in space and 
scale by computing its continuous wavelet transform using a complex 
Morlet wavelet. As shocks form, the velocity becomes very sparse in wavelet 
space, which reveals its intermittency.

On each of these figures, the scale varies logarithmically from coarse to fine 
when going upwards. The region outside the black curve is affected by boundary 
conditions or aliasing. To every scale corresponds a Fourier wavenumber, which 
allows us to represent the spectrum as a the tilted black plot on the left. The red 
curve is the wavelet scalogram, which is a smoothed version of the Fourier 
spectrum. The horizontal axis corresponds to the space coordinate, and the 
velocity is plotted in blue at the top of the figure.

The initial Gaussian white noise (left) has its 
energy homogeneously distributed throughout 
the space-scale plane. At t=0.5, one can already 
see a red cone corresponding to each shock. 
The decay exponent of the wavelet coefficients 
from coarse to fine scale is the same for all 
shocks, because they share the same order of 
singularity.
Between t = 0.5 and t = 2, shocks merge 
together and loose energy at fine scales, but 
their overall shape is preserved. Dissipation 
occurs because of the negative jumps in the 
velocity.

We compare quantitatively  the numerical solutions of the viscous (red) and 
inviscid wavelet filtered (black) equations.

Relative mean squared error
at t = 5 as a function of resolution

3. Description of the filter
The Coherent Vortex Simulation (CVS) filter consists in retaining 
only the largest coefficients of a wavelet decomposition of the 
velocity. It has been designed to extract coherent structures out of 
turbulent flows [3]. In order to preserve the translation invariance 
of the Burgers equation, we use a quasi-orthogonal complex 
valued wavelet transform [5] instead of orthogonal wavelets.

At each timestep, we decompose the velocity in the following way :
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where j is the scale, i is the position, the are the scaling functions and the   are the 
wavelets. The coarsest scale of wavelet decomposition was chosen as L = 3.
The CVS filter then consists in retaining only the wavelet coefficients above a threshold. The 
threshold T has to be estimated at each timestep from the velocity itself, We impose the condition 
that T equals 5 times the standard deviation of the wavelet coefficients below it. The threshold 
satisfying this condition is found using a fixed point iterative procedure [4]. Additionally, we discard 
the finest scale j=J-1. This step is necessary to stabilize the method.
In order to avoid discarding the whole set of coefficients before shocks can form, we only apply the 
filter for t >= 0.3.
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4. Properties of the filtered solution

For a given resolution, the solution of the 
inviscid wavelet- filtered (black) and of the 
viscous (red) equation fit well together (left, 
top). The filtered ones has spurious oscillations, 
but these remain confined to the vicinity of 
shocks. They correspond to the bump at high 
wavenumber on the Fourier spectrum (left, 
bottom). The energy decay behaviors (right) 
also match.

Velocity (top) and its Fourier spectrum 
(bottom) for N = 4096 at t = 0.9

Energy as a function of time
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● u(x,0) is one reqlization of 
a standard Gaussian 
white noise

● boundary conditions are 
periodic on [-1,1]
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Viscous Burgers equation

Inviscid Burgers equation

Fraction of retained coefficients
at t = 5 as a function of resolution

Relative mean squared error as a function 
of time for N = 4096


