
  

From (NS) one can get the following equation for the kinetic energy                     :

And by integrating on  we get the global energy budget: where

which can also be integrated on a time interval [t
a
,t

b
]:

Energy dissipation plays an important role in the following theorem: 
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Theorem 1 (Kato 1984) 
For flow in a 2D domain without forcing, the following assertions are equivalent:

i)   the Navier-Stokes flow converges to the Euler flow in C([0,T],L2()),
ii)  the energy dissipation of the Navier-Stokes solution in a strip proportional to Re-1/2 around the solid 
during the time interval [0,T] tends to zero as Re goes to infinity.

Theorem 2 (Sammartino & Caflisch 1998) 
For flow in a half-plane with analytic initial data, there exists a critical time  > 0 ( = +∞ allowed) such that the 
Navier-Stokes flow converges to the Euler flow in an analytical norm for t in [0, and not for t > 

9.Velocity along the boundary
 at t=0.5 for Re=4000 and Re=8000

t = 0.495, Re = 8000, N = 16384

t = 0.46, Re = 8000, N = 16384

t = 0.4, Re = 8000, N = 16384

t = 0.36, Re = 8000, N = 16384

t = 0, Re = 8000, N = 16384

t = 0.3, Re = 8000, N = 16384

t = 0.5

8. Inviscid experiment  with N = 4096 
Top left: snapshot of vorticity field at t = 0.5. Bottom left: energy as 

a function of time. Right: zoom on rebounding vortex.

1. Dipole-wall collision at Re=8000
   snapshots of vorticity field

RESULTS

t = 0.495, Re = 8000, N = 8192

• For the initial condition we have considered, up to Re = 16000, the energy dissipation rate after t ~ 0.35 is not consistent with Prandtl's boundary layer theory.
• This contradicts results from earlier computations using Chebichev discretization4, which may have been underresolved in the wall parallel direction.
• At these Reynolds numbers, the residual energy dissipation in the bulk of the channel remains larger than the limiting value, which makes it hard to observe on Figs. 2 and 4,
• however, the scaling is apparent when substracting its initial value to the enstrophy (Fig. 5).
• To make the finite energy dissipation rate stand out even more unambiguously, we have isolated a small domain containing intense vorticity (Fig. 6).
• The energy dissipation in this domain is almost Reynolds independent (Fig. 7).
• We suggest that this region contains a dissipative structure, which is advected inside the domain.
• If this scenario is confirmed, it means that after the critical time  ~ 0.35 (cf Th. 2) the limiting flow does not satisfy the Euler equations in the strong sense,
• The necessity to resolve scales finer than Re-1 to approximate the inviscid limit for wall-bounded 2D flows poses a great challenge. Adaptive schemes are a must.
• The question remains open as to whether the limit flow is a weak Euler solution inside the domain for t > .

INTERPRETATION

NUMERICAL METHOD

CONTEXT

Re = 2000, t = 0.5, N = 8192 Re = 4000, t = 0.5, N = 8192 Re = 8000, t = 0.5, N = 16384 Re = 16000, t = 0.5, N = 16384

5. Enstrophy increase from initial time 
   as a function of Reynolds number

4. Energy dissipation during a fixed time interval
  as a function of Reynolds number

3. Time evolution of enstrophy

2. Time evolution of energy

SETUP
We perform numerical experiments, taking for the domain  
an horizontal channel of height 0.9.
Time varies in the invertal [0 0.5].
The initial condition is a vorticity dipole4 given by:

where vorticity is defined by

7. Energy dissipation rate inside framed subregions 
   at t = 0.5 as a function of Reynolds number

Sumary of numerical computations reported here
because of Th. 1 we take N ~ Re and not N ~ Re1/2

Re 1000 2000 4000 8000 8000 16000 ∞

N 4096 8192 8192 8192 16384 16384 4096

η 2. 10-5 1. 10-5 1. 10-5 2. 10-5 0.5 10-5 2. 10-5 2. 10-5

CPUs 4 8 8 8 1024 1024 4

6. Snaphots of squared velocity gradients 
   at t = 0.5 for several Reynolds numbers

ROLE OF ENERGY DISSIPATION

References:
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We use the volume penalization method5, which consists in adding a term to 
the equations and solving them in a larger domain:

Spatial discretization is achieved using K Fourier modes, and the 
nonlinear term is evaluated on a N x N collocation grid with N = 3K to avoid 
aliasing errors
Temporal discretization relies on a Runge-Kutta 3rd order explicit scheme.

To impose energy decay for the discretized equations, we replace 
0
 

by a mollified function ,which is positive and band limited. 
Thus the discrete solution u

K,,
 satisfies :

To see how the scheme behaves, we have performed an experiment 
with Re=∞ (Fig. 8). The solution is very noisy but stable.

Stability and energy conservation Convergence

10. Vorticity snapshot at t = 0.495
for Re=8000 and N=8192

●A rigorous convergence proof for the 
volume penalization method is known5, 
but all estimates blow-up exponentially 
with Re.

●Numerically we observe that above 
Re~4000 it is very difficult to have 
satisfactory convergence up to t = 0.5.

●Theorem 1 (Kato) indicates that  
resolutions N ~ Re, orders of 
magnitudes larger than what is 
traditionally used (namely N ~ Re1/2), are 
required to observe genuine boundary 
layer detachment !!

●The tangential velocity at the boundary 
(Fig. 9) has a sharp peak with maximum 
value ~3 for Re=8000, to be compared 
with maximal values ~27 in the bulk,

●We compare (Fig. 10) the flows obtained 
for N=8192 and N=16384 at Re=8000, 

●The result seem good enough to derive 
Reynolds number scalings of energy 
dissipation, especially since our scheme 
has no systematic numerical 
enstrophy production,

●Since we were not able to compute a 
reference solution at a higher resolution, 
we cannot guarantee that the run at 
Re=16000 with N=16384 is converged.

• The broad context of this work is the inviscid limit problem for wall-bounded incompressible flows.
• We focus on the 2D Navier-Stokes equations with no-slip boundary conditions:

• Existence and uniqueness for smooth initial data and smooth boundary are not an issue.
• We are interested in the behavior of the solution         as                 (inviscid limit),

all other parameters being kept fixed.
• Boundary layer theory1 assumes that the limit satisfies Euler equation (NS with              ),
• This assumption seems in contradiction with experiments, where separation is commonly observed,
• The goal of this study is to observe numerically a nonvanishing energy dissipation rate in the inviscid limit.

(NS)

The parallel C++ numerical code is available online under the GPL licence. 
Support can be provided on demand.

 http://justpmf.com/romain/kicksey_winsey

Formulation

enstrophy

8. Horizontal cuts of vorticity field at t = 0.5 
    through point having maximal vorticity 

http://justpmf.com/romain/kicksey_winsey

