
  

From (NS) one can get the following equation for the kinetic energy                     :

And by integrating on  we get the global energy budget: where

which can also be integrated on a time interval [t
a
,t

b
]:

Energy dissipation plays an important role in the following theorem: 
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Theorem 1 (Kato 1984) 
For flow in a 2D domain without forcing, the following assertions are equivalent:

i)   the Navier-Stokes flow converges to the Euler flow in C([0,T],L2()),
ii)  the energy dissipation of the Navier-Stokes solution in a strip proportional to Re-1/2 around the solid 
during the time interval [0,T] tends to zero as Re goes to infinity.

Theorem 2 (Sammartino & Caflisch 1998) 
For flow in a half-plane with analytic initial data, there exists a critical time  > 0 ( = +∞ allowed) such that the 
Navier-Stokes flow converges to the Euler flow in an analytical norm for t in [0, and not for t > 

9.Velocity along the boundary
 at t=0.5 for Re=4000 and Re=8000

t = 0.495, Re = 8000, N = 16384

t = 0.46, Re = 8000, N = 16384

t = 0.4, Re = 8000, N = 16384

t = 0.36, Re = 8000, N = 16384

t = 0, Re = 8000, N = 16384

t = 0.3, Re = 8000, N = 16384

t = 0.5

8. Inviscid experiment  with N = 4096 
Top left: snapshot of vorticity field at t = 0.5. Bottom left: energy as 

a function of time. Right: zoom on rebounding vortex.

1. Dipole-wall collision at Re=8000
   snapshots of vorticity field

RESULTS

t = 0.495, Re = 8000, N = 8192

• For the initial condition we have considered, up to Re = 16000, the energy dissipation rate after t ~ 0.35 is not consistent with Prandtl's boundary layer theory.
• This contradicts results from earlier computations using Chebichev discretization4, which may have been underresolved in the wall parallel direction.
• At these Reynolds numbers, the residual energy dissipation in the bulk of the channel remains larger than the limiting value, which makes it hard to observe on Figs. 2 and 4,
• however, the scaling is apparent when substracting its initial value to the enstrophy (Fig. 5).
• To make the finite energy dissipation rate stand out even more unambiguously, we have isolated a small domain containing intense vorticity (Fig. 6).
• The energy dissipation in this domain is almost Reynolds independent (Fig. 7).
• We suggest that this region contains a dissipative structure, which is advected inside the domain.
• If this scenario is confirmed, it means that after the critical time  ~ 0.35 (cf Th. 2) the limiting flow does not satisfy the Euler equations in the strong sense,
• The necessity to resolve scales finer than Re-1 to approximate the inviscid limit for wall-bounded 2D flows poses a great challenge. Adaptive schemes are a must.
• The question remains open as to whether the limit flow is a weak Euler solution inside the domain for t > .

INTERPRETATION

NUMERICAL METHOD

CONTEXT

Re = 2000, t = 0.5, N = 8192 Re = 4000, t = 0.5, N = 8192 Re = 8000, t = 0.5, N = 16384 Re = 16000, t = 0.5, N = 16384

5. Enstrophy increase from initial time 
   as a function of Reynolds number

4. Energy dissipation during a fixed time interval
  as a function of Reynolds number

3. Time evolution of enstrophy

2. Time evolution of energy

SETUP
We perform numerical experiments, taking for the domain  
an horizontal channel of height 0.9.
Time varies in the invertal [0 0.5].
The initial condition is a vorticity dipole4 given by:

where vorticity is defined by

7. Energy dissipation rate inside framed subregions 
   at t = 0.5 as a function of Reynolds number

Sumary of numerical computations reported here
because of Th. 1 we take N ~ Re and not N ~ Re1/2

Re 1000 2000 4000 8000 8000 16000 ∞

N 4096 8192 8192 8192 16384 16384 4096

η 2. 10-5 1. 10-5 1. 10-5 2. 10-5 0.5 10-5 2. 10-5 2. 10-5

CPUs 4 8 8 8 1024 1024 4

6. Snaphots of squared velocity gradients 
   at t = 0.5 for several Reynolds numbers

ROLE OF ENERGY DISSIPATION

References:

fluid domain 





solid domain 
(




We use the volume penalization method5, which consists in adding a term to 
the equations and solving them in a larger domain:

Spatial discretization is achieved using K Fourier modes, and the 
nonlinear term is evaluated on a N x N collocation grid with N = 3K to avoid 
aliasing errors
Temporal discretization relies on a Runge-Kutta 3rd order explicit scheme.

To impose energy decay for the discretized equations, we replace 
0
 

by a mollified function ,which is positive and band limited. 
Thus the discrete solution u

K,,
 satisfies :

To see how the scheme behaves, we have performed an experiment 
with Re=∞ (Fig. 8). The solution is very noisy but stable.

Stability and energy conservation Convergence

10. Vorticity snapshot at t = 0.495
for Re=8000 and N=8192

●A rigorous convergence proof for the 
volume penalization method is known5, 
but all estimates blow-up exponentially 
with Re.

●Numerically we observe that above 
Re~4000 it is very difficult to have 
satisfactory convergence up to t = 0.5.

●Theorem 1 (Kato) indicates that  
resolutions N ~ Re, orders of 
magnitudes larger than what is 
traditionally used (namely N ~ Re1/2), are 
required to observe genuine boundary 
layer detachment !!

●The tangential velocity at the boundary 
(Fig. 9) has a sharp peak with maximum 
value ~3 for Re=8000, to be compared 
with maximal values ~27 in the bulk,

●We compare (Fig. 10) the flows obtained 
for N=8192 and N=16384 at Re=8000, 

●The result seem good enough to derive 
Reynolds number scalings of energy 
dissipation, especially since our scheme 
has no systematic numerical 
enstrophy production,

●Since we were not able to compute a 
reference solution at a higher resolution, 
we cannot guarantee that the run at 
Re=16000 with N=16384 is converged.

• The broad context of this work is the inviscid limit problem for wall-bounded incompressible flows.
• We focus on the 2D Navier-Stokes equations with no-slip boundary conditions:

• Existence and uniqueness for smooth initial data and smooth boundary are not an issue.
• We are interested in the behavior of the solution         as                 (inviscid limit),

all other parameters being kept fixed.
• Boundary layer theory1 assumes that the limit satisfies Euler equation (NS with              ),
• This assumption seems in contradiction with experiments, where separation is commonly observed,
• The goal of this study is to observe numerically a nonvanishing energy dissipation rate in the inviscid limit.

(NS)

The parallel C++ numerical code is available online under the GPL licence. 
Support can be provided on demand.

 http://justpmf.com/romain/kicksey_winsey

Formulation

enstrophy

8. Horizontal cuts of vorticity field at t = 0.5 
    through point having maximal vorticity 

http://justpmf.com/romain/kicksey_winsey

