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CONTEXT ROLE OF ENERGY DISSIPATION 1
1

* The broad context of this work is the inviscid limit problem for wall-bounded incompressible flows. From (NS) one can get the following equation for the kinetic energy ¢ — §u2 . Oie+ (u-V)(e+p) = EAE + ﬁ\vu\g
* We focus on the 2D Navier-Stokes equations with no-slip boundary conditions:
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l - o Energy dissipation plays an important role in the following theorem: enstrophy

Theorem 1 (Kato 1984)

For flow in a 2D domain without forcing, the following assertions are equivalent:
) the Navier-Stokes flow converges to the Euler flow in C([0,T],L*(Q)),
i) the energy dissipation of the Navier-Stokes solution in a strip proportional to Re™* around the solid
during the time interval [0,T] tends to zero as Re goes to infinity.

* Existence and uniqueness for smooth initial data and smooth boundary are not an issue.
* We are interested in the behavior of the solution uy, as Re — = (inviscid limit),

all other parameters being kept fixed.
» Boundary layer theory* assumes that the limit satisfies Euler equation (NS with Re = ~),
* This assumption seems in contradiction with experiments, where separation is commonly observed,

* The goal of this study Is to observe numerically a nonvanishing energy dissipation rate in the inviscid limit.  Theorem 2 (Sammartino & Caflisch 1998)

For flow in a half-plane with analytic initial data, there exists a critical time t > 0 (t = +c allowed) such that the
Navier-Stokes flow converges to the Euler flow in an analytical norm for tin [O, t[, and not for t > 7.
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* For the initial condition we have considered, up to Re = 16000, the energy dissipation rate after t ~ 0.35 Is not consistent with Prandtl's boundary layer theory.
* This contradicts results from earlier computations using Chebichev discretization®, which may have been underresolved in the wall parallel direction.

* At these Reynolds numbers, the residual energy dissipation in the bulk of the channel remains larger than the limiting value, which makes it hard to observe on Figs. 2 and 4, t=0.4, Re = 8000, N = 16384
* however, the scaling is apparent when substracting its initial value to the enstrophy (Fig. 5).

* To make the finite energy dissipation rate stand out even more unambiguously, we have isolated a small domain containing intense vorticity (Fig. 6).

* The energy dissipation in this domain is almost Reynolds independent (Fig. 7).

* We suggest that this region contains a dissipative structure, which is advected inside the domain.

* |f this scenario Is confirmed, it means that after the critical time t ~ 0.35 (cf Th. 2) the limiting flow does not satisfy the Euler equations in the strong sense,
* The necessity to resolve scales finer than Re™ to approximate the inviscid limit for wall-bounded 2D flows poses a great challenge. Adaptive schemes are a must.
* The guestion remains open as to whether the limit flow Is a weak Euler solution inside the domain for t > ~.

NUMERICAL METHOD
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for N=8192 and N=16384 at Re=8000,

*The result seem good enough to derive
Reynolds number scalings of energy
dissipation, especially since our scheme
has no systematic numerical
enstrophy production,

* Since we were not able to compute a
reference solution at a higher resolution,
we cannot guarantee that the run at
Re=16000 with N=16384 is converged.

Spatial discretization is achieved using K Fourier modes, and the
nonlinear term is evaluated on a N x N collocation grid with N = 3K to avoid
aliasing errors

Temporal discretization relies on a Runge-Kutta 3" order explicit scheme.

The parallel C++ numerical code is available online under the GPL licence.
Support can be provided on demand.

http://justpmf.com/romain/kicksey_winsey
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