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Introductions



Plasma simulation using particles

In hot plasmas the collision frequency is low with
respect to a variety of interesting phenomena
(including turbulence).

 solve Newton’s equations,  with

Np << N

To avoid O(Np
2) complexity, the charge and current

have to be somehow coarse-grained before
computing the electromagnetic fields.

simulated
« mesoparticles »

ions and/or
electrons



Features of particle simulations

 N body problem → particle trajectories are not
integrable,

 individual particle positions cannot be predicted,

 accurate predictions can only be expected for
global quantities,

 we focus on the single particle distribution
function, f.



A smoothness issue?
 The main source of numerical errors is the imperfect
reconstruction of the EM fields (other source: time
discretization),

 reconstruction is imperfect because there are not enough
particles,

 in other words the estimated f is « rougher » than is should,

 hence the fields are themselves too rough/spiky, and the
effective collisionality of the plasma is increased,

 we should smooth f to improve the simulation !

 (Note for later: the deterministic f can also have rough
features that we want to keep.)



Finite size particles

 A better reconstruction of the EM fields can be obtained by
assuming that the particles each represent a cloud of
charge instead of a point charge,

 this will avoid artificial collisions, at the expense of loosing
fine grained details of the PDF. (similar to LES)



The same story told from the
statistical point of view

 in fact we are trying to to solve the Vlasov equation
by discretizing it using a set of Lagrangian markers
(not physical particles!),

based on marker positions, we are looking for
the best candidate for f

since particle positions are likely to be “random” due
to the chaotic dynamics, why not try

statistical estimation ?



Statistical independance hypothesis
 the interaction between markers has two effects of a very
different nature :

 collisionless effect : time evolution of f

 “collisional effect” : build-up of correlations between
positions of numerical particles (pair correlations + higher
order)

 we assume that correlations remain small,

 marker positions can be interpreted as independent
realizations of a random variable with probability density f.
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Kernel density estimation

The nonparametric density estimation issue is in most cases
addressed by kernel density estimation (Parzen 1962):

the delta distribution corresponding to each marker is
convoluted with a localized kernel function with unit integral.

→ we come back to our starting point: finite size particles!



How can we improve this scheme ?

Main issue: unknown local regularity of the
underlying Vlasov solution, hence 
unknown smoothing scale.

We can circumvent this problem by using 
nonlinear wavelet thresholding, 
which adapts locally to the regularity of the PDF.

→ Wavelet-based density estimation (WBDE)

a good threshold scaling can be predicted based on
the statistical independance hypothesis (Donoho et
al., 1996)



Wavelet-based density estimation



Wavelet bases

wavelets are indexed by their scale j and position i, which we
regroup under the notation λ.

orthogonal wavelet bases on the real line are obtained by dilating
and translating a single, well chosen oscillating function
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Choice of wavelet family

For the present study we have
used the orthogonal 6th order
Daubechies wavelets:

 6 vanishing moments
 filters of length 12
 continuously differentiable



The empirical wavelet (resp. scaling function)
coefficients are by definition the wavelet (resp.

scaling function) coefficients of     :

The empirical density function can be written as a
sum of Dirac distributions:

Empirical wavelet coefficients



Wavelet representation of the PDF



Wavelet thresholding

Denoising consists in retaining only a subset of
the empirical wavelet coefficients in the

reconstruction.



WBDE algorithm

COARSE
keep all

FINE
discard all

J

L

nonlinear
threshold

1. Construct a histogram on a regular grid

2. Approximate the empirical wavelet coefficients by those of the histogram

3. Process the empirical wavelet coefficients as follows 
(Np is the number of particles):

keep only coefficients such that
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WBDE algorithm

COARSE
keep all

FINE
discard all

J

L

nonlinear
threshold

1. Construct a histogram on a regular grid

2. Approximate the empirical wavelet coefficients by those of the histogram

3. Process the empirical wavelet coefficients as follows 
(Np is the number of particles):

keep only coefficients such that

additional scales
that could not be
captured by a
linear procedure

reasonnable scale for stable estimation using a kernel



Applications



Methodology
 Postprocess the results of simulations done using classical

methods,

 comparisons: histogram and proper orthogonal
decomposition methods,

 whenever possible, compute the L2 error with respect to a
reference solution (obtained using a higher number of particles).

POD method

 Construct a histogram and consider it as a matrix M, then compute the SVD of M:

M = tUSV

 Set all but a few large singular values to zero,

 Reconstruct the distribution function.



1+1D Bump-on-tail instability

Vlasov-Poisson electron plasma with uniform ion
background.

Particle-in-cell code with triangular charge
assignment function

Initial condition: uniform in space, velocity
distribution with a slightly unstable tail

q = 1.25
Np = 104, 105, 106

domain size 16.52 fits 
the most unstable mode



1+1D Bump-on-tail instability

Histo

POD

WBDE

Np=104 Np=105 Np=106



1+1D Bump-on-tail instability

! 

Np =10
4

Np =10
5

f H 0.443 0.140

fP 0.163 0.090

fW 0.173 0.086

histogram

POD

WBDE

Normalized L2 error
between the reconstructed distribution functions and the
histogram obtained from the simulation with Np=106

particles:



1+1D Two-streams instability

Initial condition: two counter-propagating, uniform
in space monokinetic electron beams.

The initial condition is deterministic…oups
there is initially no noise to remove !!

But noise appears due to the instability.

How will the method handle this ?



Self-consistent noise
builds up due to the
nonlinear dynamics.
At short times, WBDE
preserves the
sharpness of the
solution.
At late times (t=400),
the estimates given by
POD and WBDE are
smoother than the
histogram because part
of the noise has been
cured.

Histo

POD

WBDE

t=40 t=60 t=100 t=400

time

1+1D Two-streams instability



2+2D Two-streams instability

v

u
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Initial condition



2+2D Two-streams instability

u

x

As before we postprocess the results of a
particle-in-cell simulation.

Number of particles:
Np = 323 000

Grid resolutions:
Ng = 324 for the histogram
and
Ng = 1284 for WBDE
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Comparison after nonlinear evolution

Histogram WBDE
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Outlook



 continue work on the 2+2D case (vary number of
particles),

 assess the importance of the artefacts introduced by
WBDE (e.g. negative density),

 avoid histograms completely by computing the empirical
wavelet coefficients directly (Daubechie's cascade
algorithm?),

 develop an electrostatic PIW (particle-in-wavelets) code,
by using the WBDE method at each timestep to estimate
the potential (in the electrostatic case it's possible to
denoise directly the charge field instead of f).

Outlook
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Ad break
C++, d-dimensional 

parallel wavelet transform library 
available for download at

http://justpmf.com/romain/kicksey_winsey
under the GPL license

Disclaimer : this is alpha software, 
only provided for your entertainment


