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What do we mean by  
inviscid limit ? 
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viscosity going to zero 

Sketchy view of inviscid limit 

kinematic viscosity becomes small compared to advective 
transport coefficient UL.  
It becomes easier just to exchange 1 and 2 by advection than 
to let momentum diffuse accross the frontier. 
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Sketchy view of inviscid limit 
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usually diverges 

when      goes to zero !!  
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Mathematical formulation 

•  We consider a single incompressible fluid with constant 
density contained in a 2D torus (we only briefly mention 
the 3D case below), 

•  the fluid may either  
–  fill the whole torus (wall-less case), 
–  be in contact with one or more solid obstacles (wall-bounded 

case). 

•  The difference between these two situations is the main 
subject of this talk. 



Mathematical formulation 
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uRe(t,x)
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u(t,x)

the Reynolds number Re = ULν-1 appears when  
non dimensional quantities are introduced. 

solution 

solution 

Navier-Stokes equations with 
no-slip boundary conditions: 

Euler equations: ? 
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Well posedness 

•  In 2D,  
–  for smooth initial data, both problems are well posed (long time existence 

and uniqueness), 
–  the Navier-Stokes problem is well posed in L2 (but beware of 

compatibility conditions, cf later), 
–  the Euler problem is well posed for bounded vorticity (Yudovich 1963),   
–  many open questions for cases with unbounded vorticity (cf later). 

•  In 3D,  
–  for smooth initial data, both problems are well posed at least for a short 

time,  
–  the Navier-Stokes problem admits a Leray-Hopf weak solution for all time, 

but uniqueness is an open question, 
–  for Euler even existence is an issue for long times. 

Ladyzhenskaya 1963, Foias, Manley, Rosa & Temam 2001, Bardos & Titi 2007 



Known convergence results 

•  Without walls, for smooth initial data, we have the strong 
convergence result (Golovkin 1966, Swann 1971, Kato 1972) : 

uniformly in time in all Sobolev spaces, for all time in 2D and 
as long as the smooth Euler solution exists in 3D. 

•  With walls, the main questions are still open (see later). € 

uRe − u =
Re→∞

O(Re−1)



Known  convergence results 

Euler 

2D wall-less case, smooth initial data 

Navier-Stokes 

Euler-Voigt 

hyperviscous 
Navier-Stokes 

Spectral vanishing  
viscosity, etc… 

Inviscid 
limit 
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Remarks on numerical approximation 

•  There exists exponentially accurate schemes for the 
 wall-less Navier-Stokes equations (i.e. the error 

decreases exponentially with computing time), 

•  in the 2D wall-less case, the numerical discretization size 
should satisfy: 

(remark : the proof of that is not yet complete) 

•  therefore, in the 2D wall-less case, solving NS provides 
an order 2 scheme to approach the inviscid limit (i.e. 
solving Euler), (at least in the energy norm)  
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What does this have to do with turbulence ? 

•  we are focusing on the fully deterministic initial value 
problem, 

•  this is many steps away from statistical theories of 
turbulence ! 

(like molecular dynamics compares to the kinetic theory of 
gases) 

•  We are looking for new “microscopic hypotheses” that 
could be used to improve current statistical theories, 

•  cf. recent discoveries by Tran & Dritschel*, who showed 
that one of the basic “microscopic hypotheses” of the 
Kraichnan-Batchelor 2D turbulence theory is slightly 
incorrect.  

*JFM 559 (2006), JFM 591 (2007) 



What is the problem with walls ? 

x 
y 

•  the wall imposes a strong tangential constraint on viscous 
flows, 

•  in contrast, no boundary condition affects the tangential 
velocity for Euler flows. 

Navier-Stokes Euler 



Über Flüssigkeitsbewegung bei sehr kleiner Reibung 

•  Prandtl (1904) and later authors proposed to use the following 
hypotheses : 
« The viscosity is assumed to be so small that it can be disregarded 

wherever there are no great velocity differences nor accumulative 
effects. […] The most important aspect of the problem is the 
behavior of the fluid on the surface of the solid body. […] In the thin 
transition layer, the great velocity differences will […] produce 
noticeable effects in spite of the small viscosity constants. »* 

•  this leads to  
Inviscid limit = Euler eq. + Prandtl eq. 

•  when this applies, the question of the inviscid limit is solved everywhere 
except inside the boundary layer : 
« It is therefore possible to pass to the limit ν = 0 and still retain the 

same flow figure.  »* 

* Prandtl 1927, engl. trans. NACA TM-452 available online 



Separation 

•  Prandtl and others were aware that this approach was 
valid only away from separation points, 

•  separated flow regions have to be included « by hand » 
since the theory doesn’t predict their behavior,  

Picture from Wikimedia Commons 



Some consequences 

•  In unseparated regions, all convergence results presented 
above for the wall-less case should apply, 

•  the Prandtl boundary layer theory implies the following 
scaling for energy dissipation between two instants t1 
and t2: 

•  since the boundary layer thickness also scales like       , 
the same scaling should apply for numerical discretization: 

(as long as the solution is well behaved inside the BL) 
•  all of this phenomenology was observed by Clercx & van 

Heisjt* by computing flows up to Re=160 000   
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Introductory movie 

Vorticity field 

for 2D wall bounded  
turbulence. 

Qualitative features: 

• intense production of 
vorticity at the walls 

• dipole-wall collisions 



Design of numerical experiments. 



Classical volume penalization method 

•  For efficiency and simplicity, we would like to stick to a spectral 
solver in periodic, cartesian coordinates. 

•  as a counterpart, we need to add an additional term in the equations 
to approximate the effect of the boundaries, 

•  this method was introduced by Arquis & Caltagirone (1984), and its 
spectral discretization by Farge & Schneider (2005),  

•  it has now become classical for solving various PDEs. 
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Convergence with η 

•  Convergence L2 and H1 norms for fixed Re was proven by 
Angot et al. (1999), 

•  all known bounds diverge exponentially with Re, 
•  arbitrarily small η cannot be achieved due to discretization 

issues, 
•  hence in practice, we do not have rigorous bounds on the 

error, 
•  we need careful validation of the numerical solution (and 

some faith!) 
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Regularization 

•  One of our main goals is to diagnose energy dissipation, 
•  hence we have introduced a regularized problem 

•  the Galerkin truncation of (RPNS) with K modes admits 
the following energy equation : 
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(RPNS) 

mollified mask function 

solution 
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∫

spurious dissipation can be monitored easily. 



Choice of geometry 

•  We consider a channel, periodic in the y direction 

   where U is the RMS velocity and L is the half-width. 

solid fluid 
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Re =
UL
ν



Choice of initial conditions 

vorticity dipole 



Choice of parameters 

•  To resolve the Kato layer, we impose 

•  We take for η the minimum value allowed by the CFL 
condition, which implies  
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N ∝Re−1
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η∝Re−1

Parameters of all reported numerical experiments 



Illustration : Fourier-truncated inviscid RPNS 
•  to check conservation properties we 

perform some runs with ν = 0, 
•  this is an example with a dipolar initial 

condition. 

time evolution of energy 

energy dissipation rate vorticity field 



Discretization 

Space discretization 
•  Galerkin method, Fourier modes with wavenumber 
•  pseudo-spectral evaluation of products, using a N x N grid, 

    with 
to ensure full dealiasing.  

Time discretization 
•  3rd order, low-storage, fully explicit Runge-Kutta scheme 

for the nonlinear and penalization terms, 
•  integrating factor method for the viscous term. 
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k ≤ K
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N = 3K



Convergence tests 

•  Test 1 : For Re = 1000 we reproduce the palinstrophy  
obtained by H. Clercx using a Chebichev method, 
•  our method allows a clean elimination of the palinstrophy defect due to 

the discontinuity in the penalization term, 
•  fully capturing the palinstrophy requires very high resolutions. 

palinstrophy defect time evolution of palinstrophy 
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Convergence tests 

•  Test 2 : for Re > 1000, we did not have access to a reference solution, 
=> auto-comparison for Re = 8000. RMS velocity difference 20%. 

N = 8192 N = 16384 



Dissipation of energy ? 



Why is dissipation of energy so essential ? 

•  Kato (1984) proved (rougly stated): 

The NS solution converges towards the Euler solution in L2 

if and and only if 
the energy dissipation during this interval vanishes, 

and even if and only if 
it vanishes in a strip of width prop to Re-1 around the solid. 
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An important practical consequence 

•  To have any chance of observing energy dissipation (i.e. 
default of convergence towards the Euler solution), we 
need a smaller grid than the one traditionally used ! 



When should we expect the flow to dissipate ? 

•  Sammartino & Caflisch (1998) proved : 

For analytic initial data, and when Ω is a half-plane, there is a 
time t0 > 0 such that in [0,t0[ 
–  the NS solution converges to the Euler solution in L2, 
–  the Prandtl equation has a unique solution which describes the 

boundary layer to first order in Re-1. 

In other words, flow separation can occur only after a positive 
time, and not at t = 0. 

Note : all our initial conditions are analytic.   



Results 



Results 

•  We focus on the dipole-wall collision. 

vorticity movie for Re = 3940 zoom on collision for Re = 7980 
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Boundary conditions 

•  A posteriori, we want to check what are the boundary 
conditions seen by the flow. 

•  We define the boundary as the isoline χ = 0.02, where the 
viscous term approximately balances the penalization term 
in the PNSE. 

•  To avoid grid effects we interpolate the fields along this 
isoline. 

•  The normal velocity is smaller than 10-3 (to be compared 
with the initial RMS velocity 0.443), 

•  but the tangential velocity reaches values of order 0.1 !! 



Boundary conditions 

•  We plot the tangential velocity as a function of the 
tangential stress: 



Boundary conditions 

•  A linear relationship with correlation coefficient above 0.98 
appears: 

•  The flow hence sees Navier boundary conditions with a 
slip length α satisfying:  
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uy +α(Re,η,N)∂xuy = 0
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Energy dissipation 

•  We now look at the energy dissipated during the collision 
for increasing Reynolds numbers.  

energy dissipation as a function of Reynolds 

Prandtl scaling ?? 



Enstrophy production 

•  To isolate the effect of the enstrophy produced at the 
boundary, we consider Z(t)-Z(0): 

enstrophy increase as a function of Reynolds 

Dissipative scaling ! 



Dissipative structures ? 



Subregions 

We define two subregions of interest in the flow : 

•  region A : a vertical slab of width 10N-1 along the wall, 
•  region B : a square box of side 0.025 around the center of 

the main structure. 

Now we consider the energy disspation rate: 

(sometimes called pseudo-dissipation rate) 

and we integrate it over A and B respectively. 
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Subregions 



Summary 

•  We have studied the behavior as a function of Reynolds 
number of a flow modeling a dipole-wall collision in a 2D 
channel, 

•  we have shown that the flow approximately satisfies 
Navier boundary conditions with a slip length proportional 
to Re-0.9, 

•  we have then shown that the enstrophy production during 
the collision scales like Re, implying nonzero energy 
dissipation in the vanishing viscosity limit, 

•  we have outlined two regions where the energy dissipation 
seems not to go to zero: a “Kato layer”, of thickness 
proportional to Re-1 along the wall, and an intense vortex. 



Perspectives 

•  Energy dissipating structures could maybe be observed 
experimentally, for example in soap films or in oceanic 
flows. 

•  Current statistical theories of 2D turbulent flows cannot 
account for energy dissipation. Understanding the 
statistical properties of 2D flows containing energy 
dissipating structures is an open question. 

•  The structure should be studied in more detail, and the link  
with the Kelvin-Helmholz instability should be clarified. 

•  3D computations with the resolution required to resolve 
the Kato layer would be very costly, but highly relevant.  



Thank you ! 

Most of the results were obtained using the Kicksey-Winsey C++ 
code, which is available online under a GPL license: 

http://justpmf.com/kicksey_winsey 
Publications are available on: 
available online under a GPL license: 

http://wavelets.ens.fr 
This work was supported by the French Federation for Fusion Studies. 
Computations were carried out in part at IDRIS-CNRS. 
MF and RNVY are grateful to the Wissenschaftskolleg zu Berlin for hospitality 
while writing this paper. 

many thanks to Claude Bardos for pointing us to the 
paper by Kato, 

and also to Gregory Eyink, Dmitry Kolomenskiy, Anna 
Mazzucato, Helena Nussenzveig-Lopes and Zhouping 

Xin for fruitful discussions.  



Lagrangian viewpoint 

•  What does the trajectory of a particle initially sitting very 
close to the boundary looks like when Re >> 1 ? 

•  to detach from the wall, a particle must jump from u = 0 to 
a finite u => infinite acceleration, 

•  we conjecture that energy will then continue to be 
dissipated along those trajectories starting from the wall, 

•  we should check numerically this using Lagrangian 
tracers. 
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a = −∇p + νΔu



Pressure vs. friction 

•  plot pressure gradient and laplacian of u, separating the 
components orthogonal and normal to u. 



Vorticity conservation 

•  In a perfect fluid without walls, vorticity is conserved along 
Lagrangian trajectories. 

•    



Dipole-wall collision at Re=8000 



Wall bounded turbulence 

Compression rate as a function of scale 

the analysis was made 
on a restricted domain 
to avoid direct boundary 
effects 



Suitable initial conditions 

•  the incompressible Navier-Stokes equations are non-local 
due to the divergence free condition, 

•  boundary conditions impose that the following force 
balance holds for all time at the boundary: 

•  this translates into a compatibility condition at t = 0, 
•  in practice this is very hard to satisfy exactly since the 

initial pressure is usually not localized even if the initial 
velocity is, 

•  failure to satisfy (C) at t=0 makes the vorticity 
discontinuous in time, and creates an artificial boundary 
layer depending on ν, 

•  care has to be taken to approximately match (C). 

€ 

(−∇p + νΔu)∂Ω = 0(C) 

see R. Temam, JCP 218, 443-450 (2006)  





Choice of mask function 

•  For stability reasons we impose that : 
•  such a χ can be obtained by convolving χ0 with a smooth positive 

kernel, 
•  we use some  well localized kernels based on Bessel functions*, 

€ 

0 ≤ χ ≤1

*Ehm et al, Trans. Am. Math. Soc. 356 (2004) 


