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Introduction



How to decompose turbulent fluctuations?

‘In 1938 Tollmien and Prandtl suggested that turbulent fluctuations might
consist of two components, a diffusive and a non-diffusive. Their ideas that
fluctuations include both random and non random elements are correct, but

as yet there is no known procedure for separating them.’

Hugh Dryden, Adv. Appl. Mech., 1, 1948

turbulent fluctuations
= nonh random + random
= coherent structures + incoherent noise

turbulent dynamics
= chaotic non diffusive + stochastic diffusive
= inviscid nonlinear dynamics + turbulent dissipation

Coherent Vorticity Simulation (CVS)




Definition of coherent
enstrophy



1D Wavelet bases

« Orthogonal wavelet bases on the real line are obtained by dilating and
translating a single, well chosen oscillating function.

* They have good locality properties both in scale and space.

The « coiflet 12 » wavelets and their corresponding energy spectra.
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the construction can be generalized to any dimension using the multiresolution formalism.

S. Mallat, A wavelet tour of signal processing, Academic Press (1999)



2D Wavelet bases




Scalewise and directionwise extraction

As a first guess, we make the hypothesis that the incoherent part is
an additive Gaussian noise.

Gaussian contributions will correspond
to the smallest wavelet coefficients at their respective scale.

Hence we can separate them by thresholding:

|wﬁif.’?=i| < TH-J ~ Incoherent u is the direction

j is the scale
1 is the position

| Wiy, j, ll = T _. coherent

The scalewise and directionwise thresholds are determined from the field itself
using a fixed-point iterative procedure (*).

(*) Azzalini et al., ACHA 18 (2004)



Results



N 10242
Re 2.104

CANKN D A II"I.O'

P
ﬂsggz\a et

) ﬁl. “’«

N 20482




t =40 Coherent Vorticity Extraction

@il |l s TNET S Rl N T S N AN N N N TR
i ) g

J N =512 .._ 1 N=1024 # - .m N = 4096 %“‘- N =8192
4 Re=410° 7 /%\ 4
3

10¢ 47\ g Re=2510° gl Re=10° F

ol ' e R Ty T T L
. \I L Nl T Ny ) m . ; .1'.:" B

g Vi TEH‘__?-."' L

l L e A
AR ]

Co"h_ere




olg

ty Extract

IC

Coherent Vort

=40

t




10"} N -1

10"} N B

10° -

10°

10 10 1:;12 10°
wavenumber

Scalewise statistics: Extraction Results
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Scalewise statistics: Extraction Results

enstrophy spectra
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Scalewise statistics: Extraction Results

enstrophy spectra
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Dissipation of coherent enstrophy

enstrophy at t = 50 normalized by initial enstrophy

1 - . - initial enstrophy
0.9F . enstrophy that has
—__ been dissipated
0.8 i betweent =10
0.7 andt =150

Enstrophy
o o
4, o

©
~

0.3 total enstrophy
does not dissipate
0.2 1 inthe inviscid limit (*)
0.1+ -
0 | " ! ! " L R |

10° 10
Reynolds number

(*) Dmitruk & Montgomery 2005,
Tran & Dritschel 2006
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Dissipation of coherent enstrophy

enstrophy at t = 50 normalized by initial enstrophy
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Dissipation of coherent enstrophy

enstrophy at t = 50 normalized by initial enstrophy
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due to the production
of incoherent enstrophy



Conclusion

« Coherent enstrophy was defined using scalewise statistics of the vorticity field
that could be obtained thanks to a wavelet transform.

« The Navier-Stokes equations at increasingly high Reynolds numbers were solved
using a classical pseudo-spectral method.

* The analysis of the numerical solutions shows that coherent enstrophy is
dissipated in the inviscid limit, even though total enstrophy is conserved.

 The remainder, incoherent enstrophy, gets spread between wavelet coefficients
that behave like a correlated Gaussian process with a spectral slope -1, like the
total vorticity field.

» We conjecture that only the coherent coefficients have to be solved for
deterministically using Coherent Vortex Simulation, while the incoherent ones
could be modelled by a random process.

More references:
http://wavelets.ens.fr
Numerical tools (incl. parallel wavelet transform):

http://justpmf.com/romain/kicksey_winsey


http://wavelets.ens.fr/

