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Spirit

Review of mathematical litterature

Numerical experiments

Physical understanding (?)

• No rigorous results.



Outline

1. Vanishing viscosity limit ?

2. Design of numerical experiments.

3. Dissipation of energy ?

4. Dissipative structures ?



What do we mean by
inviscid limit ?



Mathematical formulation

• We consider a single incompressible fluid with constant
density contained in a 2D torus (we only briefly mention
the 3D case below),

• the torus may either
– be filled with fluid only => wall-less case,
– contain solid obstacle(s)  => wall-bounded case.

• The difference between these two situations is the main
subject of this talk.



Mathematical formulation
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the Reynolds number Re = ULν-1 appears when 
non dimensional quantities are introduced.

solution

solution

Navier-Stokes equations with
no-slip boundary conditions:

Incompressible Euler equations: ?

?
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Well posedness

• In 2D,
– for smooth initial data,
both problems are well posed

(long time existence and uniqueness),
– the Navier-Stokes problem is well posed in L2

– the Euler problem is well posed for bounded
vorticity (Yudovich 1963),

– many open questions for cases with unbounded vorticity (cf later).

Ladyzhenskaya 1963, Foias, Manley, Rosa & Temam 2001, Bardos & Titi 2007



Known convergence results

• Without walls, for smooth initial data, we have the strong convergence
result (Golovkin 1966, Swann 1971, Kato 1972) :

in all Sobolev spaces for all time in 2D
(and as long as the smooth Euler solution exists in 3D).

(the constant in the O may blow up very fast in time)

• With walls, the main questions are still open (see later).! 
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Known  convergence results

Navier-stokes

2D wall-less case, smooth initial data

Euler

Euler-Voigt

hyperviscous
Navier-Stokes

Spectral vanishing 
viscosity, etc…

Inviscid
limit
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Remarks on numerical approximation

• There exists exponentially accurate schemes for the 
wall-less Navier-Stokes equations (i.e. the error decreases
exponentially with computing time),

• in the 2D wall-less case, the numerical discretization size
should satisfy:

(remark : the proof of that is not yet complete)

• therefore, in the 2D wall-less case, solving NS provides an order 2
scheme to approach the inviscid limit (i.e. solving Euler), (at least in
the energy norm!)
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What is the problem with walls ?

x
y

• the wall imposes a strong tangential constraint on viscous
flows,

• in contrast, no boundary condition affects the tangential
velocity for Euler flows.

• d’Alembert’s paradox
• Mathematically, the main obstacle to proofs is that vorticity is not

conserved (same issue in 3D even without walls).

Navier-Stokes Euler



Über Flüssigkeitsbewegung bei sehr kleiner Reibung

• Prandtl (1904) and later authors proposed to use the following
hypotheses :
« The viscosity is assumed to be so small that it can be disregarded

wherever there are no great velocity differences nor accumulative
effects. […] The most important aspect of the problem is the
behavior of the fluid on the surface of the solid body. […] In the thin
transition layer, the great velocity differences will […] produce
noticeable effects in spite of the small viscosity constants. »*

• this leads to
Inviscid limit = Euler eq. + Prandtl eq.

• when this applies, the question of the inviscid limit is solved everywhere
except inside the boundary layer :
« It is therefore possible to pass to the limit ν = 0 and still retain the

same flow figure.  »*

* Prandtl 1927, engl. trans. NACA TM-452 available online



Separation

• Prandtl and others were aware that this approach was
valid only away from separation points,

• separated flow regions have to be included « by hand »
since the theory doesn’t predict their behavior,

Picture from Wikimedia Commons, movie from “Digital fluid mechanics DVD”



Some consequences

• In unseparated regions, all convergence results presented
above for the wall-less case should apply,

• the Prandtl boundary layer theory implies the following
scaling for energy dissipation between two instants t1
and t2:

• since the boundary layer thickness also scales like       ,
the same scaling should apply for numerical discretization:

(as long as the solution is well behaved inside the BL)
• all of this phenomenology was observed by Clercx & van

Heisjt* by computing flows up to Re=160 000
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Introductory movie

Time evolution of
vorticity field for 2D wall
bounded turbulence.

Qualitative features:

•intense production of
vorticity at the walls

•dipole-wall collisions

•VERY THIN boundary
layer (it will get thinner!)



Design of numerical experiments.



Volume penalization method

• For efficiency and simplicity, we would like to stick to a spectral
solver in periodic, cartesian coordinates.

• as a counterpart, we need to add an additional term in the equations
to approximate the effect of the boundaries,

• this method was introduced by Arquis & Caltagirone (1984), and its
spectral discretization by Farge & Schneider (2005),

• it has now become classical for solving various PDEs.
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Convergence with η

• Convergence in L2 and H1 norms for fixed Re was proven
by Angot et al. (1999),

• all known bounds diverge exponentially with Re,
• arbitrarily small η cannot be achieved due to discretization

issues,
• hence in practice, we do not have rigorous bounds on the

error,
• we need careful validation of the numerical solution (and

some faith!)
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Choice of geometry

• We consider a channel, periodic in the y direction

where U is the RMS velocity and L is the half-width.

solid fluid
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Choice of initial conditions

vorticity dipole
Vorticity decays exponentially
and the circulation is zero.
Velocity also decays
exponentially.

Pressure compatibility condition not
satisfied exactly but we have
checked that it does not creat too
much problems at t=0.



Choice of parameters

• To resolve the Kato layer (see later), we impose:

•We take for η the minimum value allowed by the CFL
condition, which implies:
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Parameters of all reported numerical experiments



Convergence test

for Re > 1000, we did not have access to a reference solution, => auto-
comparison for Re = 8000. RMS velocity difference 20%.

N = 8192 N = 16384



Dissipation of energy ?



Why is dissipation of energy so essential ?

• Kato (1984) proved (roughly stated):

The NS solution converges towards the Euler solution in L2

if and and only if
the energy dissipation during this interval vanishes,

and even if and only if
it vanishes in a strip of width prop to Re-1 around the solid.
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An important practical consequence

• To have any chance of observing energy dissipation (i.e.
default of convergence towards the Euler solution), we
need a smaller grid than the one traditionally used !

• This is the essential message in this talk !!



Results



Results

• We focus on the dipole-wall collision.

vorticity movie for Re = 3940 zoom on collision for Re = 7980
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Boundary conditions

• A posteriori, we want to check what were the boundary
conditions seen by the flow.

• We define the boundary as the isoline χ = 0.02, where the
viscous term approximately balances the penalization term
in the PNSE.

• To avoid grid effects we interpolate the fields along this
isoline.

• The normal velocity is smaller than 10-3 (to be compared
with the initial RMS velocity 0.443),

• but the tangential velocity reaches values of order 0.1 !!



Boundary conditions

• We plot the tangential velocity as a function of the
tangential stress:



Boundary conditions

• A linear relationship with correlation coefficient above 0.98
appears:

• The flow hence sees Navier boundary conditions with a
slip length α satisfying:
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Energy dissipation

• We now look at the energy dissipated during the collision
for increasing Reynolds numbers.

energy dissipation as a function of Reynolds

Prandtl scaling ??



Enstrophy production

• To isolate the effect of the enstrophy produced at the
boundary, we consider Z(t)-Z(0):

enstrophy increase as a function of Reynolds

Dissipative scaling !



Dissipative structures ?



Subregions

We define two subregions of interest in the flow :
• region A : a vertical slab of width 10N-1 along the wall,
• region B : a square box of side 0.025 around the center of

the main structure.

Now we consider the local energy disspation rate:

(sometimes called pseudo-dissipation rate)

and we integrate it over A and B respectively.
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Subregions



Convergence (for t > tC) ?

Navier-stokes

2D wall-bounded case, smooth initial data

Euler

Euler-Voigt

hyperviscous
Navier-Stokes

Spectral vanishing 
viscosity, etc…

Inviscid
limit
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Summary

• We have studied the behavior as a function of Reynolds
number of a flow modeling a dipole-wall collision in a 2D
channel,

• we have shown that the flow approximately satisfies
Navier boundary conditions with a slip length proportional
to Re-0.9,

• we have then shown that the enstrophy production during
the collision scales like Re, implying nonzero energy
dissipation in the vanishing viscosity limit,

• we have outlined two regions where the energy dissipation
seems not to go to zero: a “Kato layer”, of thickness
proportional to Re-1 along the wall, and an intense vortex.
These are two examples of energy dissipating
structures (they may play the same role as shocks in
compressible flows).



Perspectives

• Energy dissipating structures could be observed
experimentally, for example in soap films or in oceanic
flows (??).

• Current statistical theories of 2D turbulent flows cannot
account for energy dissipation. Understanding the
statistical properties of 2D flows containing energy
dissipating structures is an open question.

• The structure should be studied in more detail, and the link
with the Kelvin-Helmholz instability should be clarified.

• The limiting flow has unbounded vorticity. Is it a weak
Euler solution? Or do we need an additional term to
describe it? Nobody knows (cf Onsager conjecture…).

• 3D computations with the resolution required to resolve
the Kato layer would be very costly, but highly relevant.



Thank you !

Most of the results were obtained using the Kicksey-Winsey C++
code, which is available online under a GPL license:

http://justpmf.com/kicksey_winsey
Publications are available on:

http://wavelets.ens.fr
This work was supported by the French Federation for Fusion Studies.
Computations were carried out in part at IDRIS-CNRS.
MF and RNVY are grateful to the Wissenschaftskolleg zu Berlin for hospitality
and support while working on this.
Thanks to CEMRACS and SMAI for hospitality.

many thanks to Claude Bardos for pointing us to the
paper by Kato,

and also to Gregory Eyink, Dmitry Kolomenskiy, Anna
Mazzucato, Helena Nussenzveig-Lopes and Zhouping

Xin for fruitful discussions.



Discretization

Space discretization
• Galerkin method, Fourier modes with wavenumber
• pseudo-spectral evaluation of products, using a N x N grid,

with
to ensure full dealiasing.

Time discretization
• 3rd order, low-storage, fully explicit Runge-Kutta scheme

for the nonlinear and penalization terms,
• integrating factor method for the viscous term.
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Regularization

• One of our main goals is to diagnose energy dissipation,
• hence we have introduced a regularized problem

• the Galerkin truncation of (RPNS) with K modes admits
the following energy equation :
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Illustration : Fourier-truncated inviscid RPNS
• to check conservation properties we

perform some runs with ν = 0,
• this is an example with a dipolar initial

condition.

time evolution of energy

energy dissipation ratevorticity field



Convergence tests

• Test 1 : For Re = 1000 we reproduce the palinstrophy
obtained by H. Clercx using a Chebichev method,
• our method allows a clean elimination of the palinstrophy defect due to

the discontinuity in the penalization term,
• fully capturing the palinstrophy requires very high resolutions.

palinstrophy defect time evolution of palinstrophy

! 

P =
1

2
"#

2

$

%



Lagrangian viewpoint

• What does the trajectory of a particle initially sitting very
close to the boundary looks like when Re >> 1 ?

• to detach from the wall, a particle must jump from u = 0 to
a finite u => infinite acceleration,

• we conjecture that energy will then continue to be
dissipated along those trajectories starting from the wall,

• we should check numerically this using Lagrangian
tracers.
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Dipole wall collision at Re = 8000



When should we expect the flow to dissipate ?

• Sammartino & Caflisch (1998) proved :

For analytic initial data, and when Ω is a half-plane, there is a
time t0 > 0 such that in [0,t0[
– the NS solution converges to the Euler solution in L2,
– the Prandtl equation has a unique solution which describes the

boundary layer to first order in Re-1.

In other words, flow separation can occur only after a positive
time, and not at t = 0.

Note : all our initial conditions are analytic.



Suitable initial conditions

• the incompressible Navier-Stokes equations are non-local
due to the divergence free condition,

• boundary conditions impose that the following force
balance holds for all time at the boundary:

• this translates into a compatibility condition at t = 0,
• in practice this is very hard to satisfy exactly since the

initial pressure is usually not localized even if the initial
velocity is,

• failure to satisfy (C) at t=0 makes the vorticity
discontinuous in time, and creates an artificial boundary
layer depending on ν,

• care has to be taken to approximately match (C).

! 

("#p + $%u)
&'

= 0(C)

see R. Temam, JCP 218, 443-450 (2006) 



Choice of mask function

• For stability reasons we impose that :
• such a χ can be obtained by convolving χ0 with a smooth positive

kernel,
• we use some  well localized kernels based on Bessel functions*,

! 
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*Ehm et al, Trans. Am. Math. Soc. 356 (2004)


