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Abstract
In the bacterium Escherichia coli, the Min-proteins show pronounced pole-to-pole
oscillations. They are functional for suppressing cell division at the cell ends, leaving the
center as the only possible site for division. Analyzing different models of Min-protein
dynamics in a bacterial geometry, we find waves on the cytoplasmic membrane. Interestingly,
the surface wave solutions of different models belong to different symmetry classes. We
suggest that experiments on Min-protein surface waves in vitro are helpful in distinguishing
between different classes of models of Min-protein dynamics.

1. Introduction

Cells are able to generate complex spatio-temporal patterns.
Very often they appear in the form of waves. Examples are
intracellular calcium waves [1], the beating patterns of sperm
flagella [2], or Min oscillations in the bacterium Escherichia
coli [3]. Many of these patterns can be understood by
self-organization of cellular components [4]. First physical
approaches to these patterns were based on reaction–diffusion
systems, which were introduced in a biological context by
Turing [5]. The above-mentioned calcium waves provide a
good example for which a description in terms of a reaction–
diffusion system has been successful [6]. In other cases,
however, the mechanism underlying self-organization turned
out to be different from reaction–diffusion. The beating of
flagella, for example, is caused by spontaneous mechanical
oscillations of motor proteins [7, 8]. For many other systems,
the mechanism has not yet been clearly identified.

An example for the latter is given by the Min oscillations
in E. coli [9]. There, the proteins MinC, MinD and MinE
help to select the center of the rod-shaped bacterium as the
location of division. By periodically shifting from one cell
pole to the other, these proteins inhibit division at the poles,
leaving the center as the only possible site. An increasing
body of theoretical works aims at elucidating the mechanism
generating the oscillations [10–19]. While there is a broad
consensus that the oscillations arise through self-organization,
the precise underlying mechanism remains elusive. The

models that have been suggested so far can roughly be grouped
into two classes. One group belongs to the class of reaction–
diffusion systems, although with the peculiar feature that the
total protein number is conserved. The models forming the
other group are based on the idea that self-organization relies
essentially on aggregation of proteins bound to the cytoplasmic
membrane.

On a molecular level, the oscillations are generated by the
proteins MinD and MinE [20]. MinD is an ATPase, which
has a high affinity for the cytoplasmic membrane when ATP
is bound, but a low affinity otherwise [21]. As to MinE,
it is able to increase the rate of ATP hydrolysis by MinD
when bound to MinD. This preferentially occurs when MinD
is attached to the membrane, which leads to the following
cycle of MinD and MinE exchange between the cytoplasmic
membrane and the cytoplasm: MinD binds ATP and associates
with the membrane. Subsequently, MinE binds to membrane-
bound MinD and induces ATP hydrolysis. Consequently,
MinD as well as MinE detach from the membrane. These basic
steps are incorporated in all descriptions of the Min dynamics.
However, this exchange dynamics together with diffusive
transport of MinD and MinE does not suffice to generate
oscillations [10–12]. In cooperative attachment (CA) models,
which belong to the class of reaction–diffusion systems, self-
organization is caused by cooperative effects between the Min-
proteins in the course of membrane binding and unbinding
in addition to those mentioned before [10, 11, 13, 14, 16–
19]. Mobility of membrane-bound proteins is dispensable,
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Figure 1. Chiral solution of the dynamic equations (1)–(4). (a) Concentration of membrane-bound MinD, cd + cde. The black line on the
bacterium indicates an iso-concentration curve with cd + cde = 295 µm−2. In addition to the pole-to-pole oscillations, the distribution turns
around the long axis. A solution with the opposite sense of rotation coexists with the one presented here. (b) Location of the maximum
MinD concentration on the red circle indicated on the top (distribution at t = 0 s) for the solution presented in (a). Color code as in (a).
Parameters are L = 3.2 µm, R = 0.68 µm, D = 1300 µm−3, E = 500 µm−3, ωD = 8.4 × 10−5 µm3 s−1, ωde = 0.04 s−1, ωE = 3.4 ×
10−4 µm3 s−1, k1 = 16.6 × 10−6 µm6 s−1, k2 = 26.6 × 10−7 µm8 s−1, k̄1 = −k1, k̄2 = 10−4k2,DD = DE = 15.4 µm2 s−1, Dd =
0.2 µm2 s−1, cmax = 500 µm−2. D and E are the total numbers of MinD and MinE in the cell divided by the cell volume.

although it does not necessarily destroy oscillations [19]. By
contrast, in aggregation current (AC) models, the Min-proteins
self-organize into an oscillatory state by attractive interactions
between proteins already bound to the membrane.

So far, there are no experiments that would allow one to
exclude any of these mechanisms. Instead, the introduction of
both additional cooperative effects during binding as well as
an aggregation current can be justified by experimental data.
First of all, the existence of aggregates of MinD bound to the
membrane was demonstrated in vivo and in vitro [21, 22]. In
both cases helices are formed, but the corresponding pitches
differ largely. Supporting the hypothesis of an aggregation
current, in vitro experiments involving a non-hydrolyzable
ATP-analog suggested a two-step mechanism for the formation
of MinD helices [21]. This mechanism involves as a first
step the binding of MinD to the membrane and as a second
step the clustering of MinD. Further support for an important
role of attractive interactions between MinD bound to the
membrane results from a yeast two-hybrid assay [23]. This
study revealed significantly stronger interactions between two
MinD proteins when both are bound to the membrane as
compared to situations in which at least one member is not
bound. The existence of cooperative effects during MinD
binding to the membrane is indicated by in vitro experiments
revealing that binding of MinD to phospholipid membranes
deviates from simple Langmuir isotherms [24] and can be
described by a Hill function with a Hill coefficient 2 [25].
Note, however, that these data can be explained by assuming
that after binding of ATP, cytoplasmic MinD dimerizes before
attaching to the membrane as has been suggested in [26]. This
cooperative effect is not sufficient to generate an instability of
the homogenous protein distribution, though.

Analysis of the different models has until now largely
focused on solutions that are rotationally symmetric with
respect to the bacterial long axis. In this work, we investigate
the aggregation current model introduced in [15] in a bacterial
geometry. We find solutions that are not invariant with
respect to rotations around the bacterial long axis. Instead,
superimposed on the pole-to-pole oscillations, we find a
traveling wave on the inner bacterial surface moving around
the circumference. Solutions breaking rotational symmetry
can also be found in the most studied cooperative attachment
model [13] when solved in a bacterial geometry. They can
be either standing waves or traveling waves on the membrane
along the bacterial long axis and are thus qualitatively different
from the waves observed in the AC model. We went on to solve
the models in a geometry corresponding to a flat membrane
immersed in a buffer containing MinD, MinE and ATP. Again,
we find traveling waves on the membrane surface when using
the AC model. By contrast, we find for the CA model that it
always relaxes into a homogenous stationary state. We suggest
that such an experiment can be used to distinguish between AC
and CA as being the essential cause of the Min oscillations
in vivo.

2. Results and discussion

2.1. Min-dynamics in a bacterial geometry

Consider the dynamics of Min-proteins in a bacterial geometry
as described by the aggregation current (AC) model introduced
in [15]. The bacterial geometry is approximated by a
cylindrical domain with hemispherical caps at the cylinder
ends, see figure 1(a). The state of the system is given in terms
of the MinD and MinE distributions. The distributions of
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MinD and MinE in the cytoplasm are described by the fields
cD and cE , that are defined in the interior of the domain. The
distributions of MinD and MinDE complexes bound to the
membrane are given by the fields cd and cde, that are defined
on the two-dimensional domain boundary. The dynamic
equations for the densities capture the exchange of MinD and
MinE between the cytoplasm and the membrane as well as
the transport of membrane-bound MinD molecules, which are
subject to mutually attractive interactions. Explicitly, we have

∂tcD = −ωD(cmax − cd − cde)cDδ(S)

+ ωdecdeδ(S) + DD�cD (1)

∂tcE = ωdecdeδ(S) − ωEcdcEδ(S) + DE�cE (2)

∂tcd = ωD(cmax − cd − cde)cD − ωEcdcE − ∇ · jd (3)

∂tcde = −ωdecde + ωEcdcE. (4)

Here, cmax is the maximal density of MinD on the membrane
and the parameters ωD,ωE and ωde determine the rates of
MinD- and MinE-binding to the membrane and of MinDE-
unbinding from the membrane. Binding is restricted to
particles in the vicinity of the cytoplasmic membrane by δ(S),
where S is the surface of the model bacterium. The diffusion
constants of cytoplasmic MinD and MinE are DD and DE ,
respectively. The operator ∇ denotes the gradient operator
on the surface S, while � is the Laplace operator in three
dimensions.

The two-dimensional current jd , which describes transport
of MinD bound to the membrane, has the form of a Cahn–
Hilliard current [27]:

jd = −Dd∇cd + cd(cmax − cd − cde)[k1∇cd + k2∇�cd

+ k̄1∇cde + k̄2∇�cde]. (5)

In this expression, � is the Laplace operator on the surface
S,Dd is the diffusion constant of MinD on the membrane and
the coefficients k1 and k2 > 0 are parameters characterizing
the interactions between MinD molecules. If k1 > 0 then
this interaction is attractive. Possible modifications of MinD–
MinD interactions due to the binding of MinE to MinD are
taken into account by the parameters k̄1 and k̄2. For simplicity,
a possible MinDE current is neglected. Furthermore, the
equations do not incorporate a possible MinD dimerization
before binding to the membrane [26]. Adding corresponding
terms does not significantly alter the dynamics generated by
the model for the parameters used. This can be understood
by noting that the large diffusion constants of cytoplasmic
MinD and MinE, DD ≈ 15 µm2 s−1 and DE ≈ 10 µm2 s−1

[28], for cells a few micrometers in size, result in an almost
uniform spatial distribution of cytoplasmic MinD. To a large
extent, the effect of MinD dimerization prior to binding to the
membrane can thus be accounted for by an appropriate value
of the parameter ωD .

In the following, we will consider cmax, k1 and k2 to be
phenomenological parameters. In principle, though, their
values are related to microscopic parameters [15, 29, 30].
A simple guess for the maximal density of membrane-bound
MinD is cmax = 1/(lateral size of a MinD molecule), which
leads to cmax = 104 µm−2. However, there is evidence that

MinD binds only to specific lipids in the membrane reducing
this value [25]. We will use a value of cmax = 500 µm−2

to produce oscillations that are compatible with experimental
data. Furthermore, k1 and k2 give a characteristic length scale
r = (k2/k1)

1/2 which determines the scale of the pattern
generated by this mechanism. It can therefore not be equal
to the bare interaction range of the MinD–MinD interaction
which should be on the order of a few nanometers.

Assuming that the distributions are invariant with respect
to rotations around the cylinder axis, an analysis of the dynamic
equations in one spatial dimension is appropriate. In that
case, equations (1)–(4) generate solutions which present the
essential features of the Min oscillations [15]4. The helical
arrangement of MinD can, of course, not be captured in this
case.

We numerically integrate the dynamic equations (1)–(4)
in the bacterial geometry described above with total length
L and radius R 5. For sufficiently small values of k1, the
stationary spatially uniform distribution of Min-proteins is
stable against small perturbations. If k1 exceeds a critical
value, depending on parameter values, either stationary or
oscillating spatially heterogeneous solutions are found. A
subset of these solutions is invariant with respect to rotations
around the system’s long axis. They confirm the results of the
one-dimensional analysis [15]. In addition, we find solutions
breaking rotational invariance when the cell radius is increased
beyond the wild-type radius of E. coli. A typical example is
presented in figure 1(a), where snapshots of the total MinD-
distribution, cd + cde, are presented for several points in time.
Pole-to-pole oscillations are clearly visible6. Superimposed on
these are traveling waves on the membrane surface that circle
around the cell’s long axis. The existence of chiral waves
is independent of the system length, as long as the system
displays oscillations.

In figure 1(b), we show for different times the position
and amplitude of the maximum of the total MinD distribution,
cd +cde, on a path encircling the cell surface. It reveals that the
rotation velocity of the traveling wave is not constant. The time
needed for one full turn is in general incommensurate with the
period of the pole-to-pole oscillations. Note, furthermore, that
these distributions break chiral symmetry. The handedness
of the solution is determined spontaneously by the initial
condition. A solution mirror-symmetric to that presented here
coexists for the same parameter values. The distribution of
membrane-bound MinE, cde, is similar to that of MinD, see
figure 2.

Figure 3(a) presents a phase diagram of the system as
a function of the dimensionless interaction strength k̃ =
4 These equations do not generate the MinE-ring observed experimentally.
By assuming that MinE preferentially binds to regions of a given MinD density,
solutions representing MinE-rings are produced [12], see also [10], where a
similar assumption was made. The MinE-ring is not essential for the Min
oscillations, though [31].
5 In the numerical integrations of the AC model, we assume that the
cytoplasmic distributions are homogenous in a cross-section perpendicular
to the system’s long axis. This is appropriate for the diffusion constants of
DD ≈ 15 µm2 s−1 and DE ≈ 10 µm2 s−1 that have been measured in E. coli
[28].
6 There are also stationary solutions that break rotational symmetry. They
correspond to protein blobs forming on the membrane.
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Figure 2. Distribution of MinE on the membrane corresponding to the solution presented in figure 1. Here, the black line indicates an
iso-concentration curve at cde = 120 µm−2.
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Figure 3. Phase diagrams. (a) Numerically determined phase diagram for equations (1)–(4) in a bacterial geometry as a function of the
dimensionless radius R̃ = R/r , where r = √

k2/k1, and the dimensionless interaction strength k̃ = c2
maxk

2
1/(ωdek2). The distribution of

Min-proteins is either stationary and homogenous (gray dots) or oscillates, while being rotationally symmetric (yellow stars) or chiral (blue
triangles). The oscillations of data point (1.7, 650) are shown in figures 1 and 2. (b) As (a) but in a cylindrical geometry. Black lines
indicate boundaries of linear stability of lateral and circumferential modes and are good approximations for the phase boundaries, see text
for further details. In (a) parameters are (ωDcmax)/(ωder) = 2.6, (ωEcmax)/(ωder) = 10.5, DD/(r2ωde) = DE/(r2ωde) =
2400, Dd/(r

2ωde) = 30, k̄1 = −k1, k̄2 = 10−4k2, (Dr)/cmax = 1.04, (Er)/cmax = 0.4. The protein concentrations correspond to a MinD
concentration of 900 µm−1 and a MinE concentration of 350 µm−1 in a cell of 3 µm length and 1 µm diameter. In (b) we chose
ωDCD/ωde = 0.79, ωECE/ωde = 0.79, where CD and CE are the constant cytoplasmic concentrations. The other parameters are as in (a).

c2
maxk

2
1

/
(ωdek2) and the dimensionless cell radius R̃ = R/r ,

where r is the characteristic length defined above. We see
that the homogenous protein distribution is stable as long
as the interaction strength k̃ is sufficiently small. Above a
critical value, the distributions are heterogeneous. For the
parameter values chosen for figure 3, they oscillate. These
solutions are rotationally invariant for small radii R̃, but lose
this invariance beyond a critical radius. The value of the critical
radius depends on k̃. In addition, these solutions rotate around
the cylinder axis and spontaneously break chiral symmetry.
Consequently, two solutions of different handedness and
correspondingly of different senses of rotation coexist in this
regime.

In order to gain more insight into the phase diagram, we
analyze the dynamic equations in the simpler geometry of a
cylinder without hemispherical caps. At the cylinder ends,
we choose reflecting boundary conditions. Furthermore, we
assume the distributions cD and cE to be homogenous, which
is a good approximation in view of the large cytoplasmic
diffusion constants measured for MinD and MinE [28]. In that

case, the dynamic equations for the cytoplasmic distributions
(1) and (2) decouple from the dynamic equations for the
distributions of membrane-bound proteins (1) and (4), see
[15]. The cytoplasmic concentrations evolve into a stationary
state and we are left with the dynamics on the membrane.
In spite of these simplifying assumptions, the corresponding
phase diagram is qualitatively similar to the diagram obtained
before, see figure 3(b). We now perform a linear stability
analysis of the homogenous state. To this end, we decompose
the distributions cd and cde in terms of the eigenfunctions
fn,m(z, s, t) = exp(λn,mt) exp(ins/R) cos(mπz/L), with
n,m = 0, 1, 2, . . ., of the linearized time-evolution operator.
Here, t is time, z with 0 � z � L the coordinate
along the system’s long axis and s the coordinate along the
circumference. The parameters R and L denote the radius and
the length of the cylinder coat, respectively. Finally, λn,m is
the growth exponent of the eigenfunction fn,m. Note that each
fn,m respects the boundary conditions.

The growth exponents λn,m depend only on the absolute
value q of the wave vector q, which can take the discrete
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Figure 4. Growth exponents and wave vectors of equations (1)–(4) in a cylindrical geometry and linearized with respect to the stationary
homogenous distribution. (a) The real and imaginary part of growth exponent λ as a function of the wave number q. The red line indicates
the interval of unstable modes. Parameters are as in figure 3(b), with k̃ = c2

maxk
2
1/(ωdek2) = 500 and L = 7.5r (r = (k2/k1)

1/2). (b) and (c)
Grid of wave vectors corresponding to eigenmodes in the cylindrical geometry. The red annulus indicates regions of unstable wave vectors
as obtained from the linear stability analysis. qz: wavenumber of the lateral eigenmode, qs : wavenumber of circumferential eigenmode. In
(b) all circumferential modes are stable, in (c) there are unstable circumferential modes. Cylinder radii are R = 1.25r (b), and R = 2r (c).

values q(n,m) = (n/R,mπ/L). A typical dependence
of the growth exponent’s real and imaginary parts on q is
illustrated in figure 4(a). If k̃ is larger than a critical value,
the real part of λ(q) is positive in some interval. Examples
of wave vector lattices for two different radii R̃ together
with the regions of λ(q) > 0 are presented in figures 4(b)
and (c). As can be seen, different modes are unstable
if the system’s radius is changed. In particular, for large
radii, modes with m �= 0 can get unstable indicating the
presence of circumferential waves. Remarkably, for k̃ close
to its critical value, the boundary between oscillating states
with and without rotational symmetry is well approximated
by the stability boundary of modes with m �= 0, see
figure 3(b). The chiral waves thus result from coupling
between the longitudinal (n = 0,m �= 0) and circumferential
modes (n �= 0,m = 0).

Waves breaking rotational invariance can also be found
in cooperative attachment (CA) models. We performed
numerical calculations in the cell-like geometry using the
dynamic equations proposed by Huang and Wingreen [32].
Similar to the model discussed above, distributions breaking
rotational symmetry are found if a certain critical radius of the
system is exceeded. We found two kinds of such solutions,
see figure 5. In both cases, the pole-to-pole oscillations
of the MinD and MinE distributions are superimposed by
standing waves along the circumference. The frequencies of
the circumferential and the longitudinal oscillations are locked
either in a ratio of 1:1, figure 5(a), or in a ratio 1:2, figure 5(b).
In the former case, this gives the impression of a traveling
wave along the bacterial long axis.

This characteristic difference between the patterns of
the AC and the CA model in the bacterial geometry can
be understood by again considering the simplified geometry
of a cylinder without hemispherical caps. As indicated in
figure 3 for the AC model, close to the instability, the dynamics
along the long axis and along the circumference decouple from
each other, since the dynamics is well approximated by the
linearized equations. A corresponding analysis can be done
for the CA model, where now the cytoplasmic concentrations
are not considered to be homogenous. We investigated the
dynamics along the circumferential direction by studying the

solutions in one spatial dimension with periodic boundary
conditions. We performed extensive numerical simulations
and found that while the AC model generates traveling waves,
the CA model produced standing waves in this geometry. This
agrees nicely with the solutions found in the full bacterial
geometry and highlights a fundamental difference between the
two models on the level of the collective behavior generated.
We will now discuss an experimental situation that exploits this
difference and might therefore help to distinguish between the
two mechanisms in E. coli.

2.2. Waves in open geometries

As chiral waves could be hard to detect in vivo, we looked
for an experimental situation that would allow one to observe
waves of Min-proteins. Such a situation might be given by a
flat cytoplasmic membrane supported by a substrate immersed
in a buffer solution that acts as a reservoir for MinD, MinE and
ATP. We now discuss the dynamics of Min-proteins in such a
geometry for two different initial conditions corresponding
to different experimental settings. The first seems more
convenient from an experimental point of view, while the
second allows for a better theoretical analysis.

In the first scenario, we start with a membrane to which
no proteins are attached. Experimentally, this situation can
be realized by initially preparing the buffer solution without
ATP. In that case, MinD and therefore MinE do not bind
to the membrane [33]. At time t = 0, ATP is added and
the Min-proteins start to bind to the membrane, which is
assumed to lie in the (x, y)-plane. We analyze this situation by
solving the dynamic equations (3) and (4) in the (x, y)-plane.
As initial distribution, we use cd(x, y) = εcmaxr(x, y) and
cde(x, y) = 0, where ε � 1 and r(x, y) is a field of random
numbers between 0 and 1. This distribution is used to mimic
an initially sparse irregular cover of the membrane by MinD.
A homogenous initial distribution results in homogenous
distributions for all time when evolved by equations (3) and (4).
For simplicity, we assume in the following that the solutions
are invariant with respect to translations in the y-direction,
leaving us with an essentially one-dimensional problem. The
cytosolic concentrations are assumed to be fixed by the buffer,
cD(x, t) = CD and cE(x, t) = CE for all x and t.
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Figure 5. Solutions to the cooperative attachment model of [32] breaking rotational invariance. Shown are concentrations of
membrane-bound MinD, cd + cde. Black lines indicate iso-concentration contours with cd + cde = 740 µm−2 (a) and cd + cde = 360 µm−2

(b). Superimposed onto the longitudinal pole-to-pole oscillations are standing waves along the circumference. In (a), where
cmax = 2000 µm−2, the period of the longitudinal oscillation is twice that of the circumferential oscillation, in (b), where cmax = 1000 µm−2,
they are equal. Other parameters are (same notation as in [32]) σde = 0.4 s−1, σ ADP→ ATP

D = 1 s−1, σD = 0.025 µ s−1, σdD = 0.0015 µm3 s−1,
σE = 0.3 µm3 s−1,DD = DE = 2.5 µm2 s−1,D = 1300 µm−3 and E = 500 µm−3. The cell has a length of 2.5 µm and a radius of 1 µm.
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Figure 6. Time evolution of the MinD concentration on a flat membrane in an open geometry using equations (3) and (4). The initial
condition was an essentially empty membrane with small fluctuations in the MinD concentration. The asymptotic state is either stationary
(a) or oscillatory (b). In (b), the transient phase in the beginning is left out and only the asymptotic state is shown. Parameters are
ωde = 0.04 s−1,Dd = 0.2 µm2 s−1, k1 = k2 = 0, cmax = 477 µm−2 with ωDCD = 0.014 s−1, ωECE = 0.024 s−1, k1 = 11.2 ×
10−6 µm6 s−1, k2 = 18 × 10−7 µm8 s−1 in (a) and ωDCD = 0.08 s−1, ωECE = 0.32 s−1, k1 = 13.4 × 10−5 µm6 s−1,
k2 = 21.5 × 10−6 µm8 s−1 in (b).

Asymptotically, the initial distribution evolved either into
a homogenous or into a heterogeneous distribution. In the
latter case, the distribution was either stationary or oscillatory.

The case of a stationary solution is presented in figure 6(a),
where a spacetime plot of the MinD-concentration profile can
be seen. As time increases, a spatially periodic pattern of high
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Figure 7. Analysis of front propagation into the unstable homogenous stationary state on a flat membrane. (a) and (b) Time evolution of the
concentration of bound MinD. Initial condition: homogenous distribution with localized perturbation in the interval (0 µm, 2 µm) where
the concentration was increased by 1%. The asymptotic state is either stationary (a) or oscillatory (b). Blue lines indicate the rightmost
location with cd = (1 + 5 × 10−4)Cd , where cd = Cd is the concentration of membrane-bound MinD in the stationary state (Cd = 143 µm−2

(a) and Cd = 37 µm−2 (b)). (c) Propagation speed and pattern wavelength as a function of k1. Numerically obtained data (black dots for
speed, gray rhombi for wavelength, error bars indicate fitting errors) are compared to results from the linear analysis (red and green lines),
see section 2.2 and appendix. Deviations are due to approximations in our calculations and nonlinear effects. The parameters are chosen for
(a) as in figure 6(a), and for (b) as in figure 6(b) but with k1 = 10.7 × 10−6 µm6 s−1, k2 = 17 × 10−7 µm8 s−1 and k1 = 12.1 ×
10−5 µm6 s−1, k2 = 19.3 × 10−6 µm8 s−1 for (a) and (b), respectively. The boundary conditions are such that the first and third spatial
derivative of the concentrations vanish at x = 0 and x = 80 µm.

and low concentrations develops throughout the system. An
oscillatory solution is shown in figure 6(b).

These solutions can be contrasted to solutions of the
CA model of [13] in the same geometry. Using the same
assumptions as above the corresponding dynamic equations
simplify to

∂tcd = (σD + σdD(cd + cde))(cmax − cd − cde)/cmax

− σEcd + Dd∂
2
x cd (6)

∂tcde = −σdecde + σEcd + Dde∂
2
x cde, (7)

where, as in [32], we have introduced a maximal surface
density of membrane-attached molecules. Furthermore, in
comparison to the original equations, we have added diffusion
terms for cd and cde. Solving the dynamic equations of
[13] plus surface diffusion terms in a bacterial geometry,
oscillations were found for Dd = Dde = 0.01 µm2 s−1

[19]. The symbols σD, σ dD and σE denote the effective
rates σDCD, σdDCD and σECE , where CD and CE are
the constant cytoplasmic protein concentrations. In our
numerical calculations, the initial distributions asymptotically
always evolved toward homogenous distributions. In these
calculations, we scanned a part of the parameter space such
that the parameter values did not vary from the ones given
in [32] by more than 10%. Compatible with the numerical
results, a linear stability analysis shows that, for the dynamic
equations (6) and (7), the stationary homogenous state is stable.

Similar differences between the AC and CA models
can also be found in the second scenario. There, we start
with a stationary homogenous distribution of MinD and
MinDE complexes to which we add a localized perturbation.
For the CA model of [32], we again always find that
the perturbation relaxes, approaching after long times a
homogenous distribution. In contrast, for the AC model
studied above, the perturbation need not relax. Figure 7
shows cases where the perturbation grows and spreads. For
the chosen parameter values, the propagating front leaves a
striped (stationary or oscillatory) pattern in its wake. For an
emerging stationary pattern, the propagation velocity v and
the wavelength 	 of the pattern as a function of the interaction
strength k1 is presented in the same figure.

We have calculated the asymptotic linear spreading
velocity of the perturbation propagating into the unstable
state, see [34] for a review of this method. Essentially, the
time evolution of the perturbation is analyzed by solving
the dynamic equations that are linearized with respect to
the unstable state. The asymptotic linear spreading velocity
v∗ is the average velocity of the level curve xε(t) =
max{x|cd(x, t) = Cd + ε} in the limit of large times7,
where Cd is the concentration of the stationary state. The
value of ε has to be chosen sufficiently small such that
the propagating front is described well by the linearized

7 Note that the velocity is the same if xε is defined with cde instead of cd .
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dynamic equations. Details of our calculation are presented
in the appendix. We find that the actual spreading velocity
is well approximated by the linear spreading velocity v∗, see
figure 7(d). Furthermore, our linear analysis gives a good
approximation for the wavelength 	 of the periodic pattern that
is formed in the wake of the perturbation front, see figure 7(d).
Generally, we find that the spreading velocity increases with
the values of k̃ = c2

maxk
2
1

/
(ωdek2) and ωde. In contrast, the

velocity decreases with an increasing diffusion constant Dd .
Furthermore, the wavelength 	 increases with k̃ and decreases
with the diffusion constant Dd .

3. Conclusion and outlook

In this work we have analyzed an aggregation current (AC)
model for the dynamics of the Min-proteins in E. coli. We
found that waves on the cytoplasmic membrane are a genuine
feature of the AC mechanism. Similar patterns have been
found in surface chemical reactions in the presence of attractive
interactions between the adsorbed particles [35, 36]. In
our analysis of the AC model in a bacterial geometry, we
found chiral surface waves that propagate around the bacterial
circumference and that are superimposed on the pole-to-
pole oscillations characteristic for the Min-proteins in E. coli.
These solutions have a definite handedness and coexist with
a solution of reversed sense of rotation. Solutions breaking
rotational symmetry can also be found in the cooperative
attachment (CA) model suggested by Huang et al [13, 32].
In contrast to the chiral waves, all such solutions we observed
result from a coupling between a standing longitudinal and
a standing circumferential wave and are consequently non-
chiral. Correspondingly, an analysis of the two models in
one dimension with periodic boundary conditions revealed
traveling waves for the AC model and standing waves for
the CA model. The different wave patterns reflect thus a
characteristic difference between the two model classes. As
in both models analyzed here only generic terms appear, we
expect this result to be valid for a large number of CA and
AC models and to be independent of many of the biochemical
details making up the dynamics of MinD and MinE.

Are distributions of Min-proteins breaking rotational
symmetry observed experimentally? The helical arrangements
of membrane-bound MinD and MinE reported in [22] do
break this symmetry. Neither of the solutions presented here,
however, resembles this pattern even though the chiral waves
share the same symmetry with the helices. We therefore
speculate that the effects presented here should rather be visible
in bacteria with an enlarged radius compared to wild-type
E. coli. Observation of the Min dynamics in such cells might
therefore provide valuable hints on the oscillation mechanism.
Our calculations show that circumferential modulations of the
surface densities should become visible for bacterial radii
which are of the same order as the characteristic length of
the longitudinal pattern.

A possibly easier way to study Min-protein surface waves
is offered by in vitro experiments where a flat membrane
supported by a solid substrate is exposed to a buffer containing
MinD, MinE and ATP. Analyzing such a situation, we found

the formation of interesting patterns and surface waves of
bound proteins in the AC model. In contrast, the CA model
evolves the system into a stationary homogenous state. By
calculating the linear spreading velocity of a perturbation front
moving into an unstable state, we were able to characterize the
dependence of the wave velocity on the system parameters.
This should help to design experiments aiming for detecting
surface waves.

The analysis performed here was based on a deterministic
description of the Min dynamics. For the µM concentrations
of MinD and MinE present in E. coli, fluctuations are likely
to be non-negligible. It will therefore be important to extend
our analysis to a stochastic description of the Min-proteins in
the bacterial as well as in the open geometry. A stochastic
analysis for surface reactions showed that the phenomenon of
surface waves persists in the presence of fluctuations [37]. In a
stochastic model based on similar assumptions as that of [13],
which assumed rotational symmetry of the solution, traveling
waves are observed for some interspersed time intervals [17].
Their origin is, however, unclear and might lie in stochastic
transitions between different standing wave patterns. Studies
of a stochastic variant of the CA model in a bacterial geometry
have not reported on solutions breaking rotational symmetry
[16, 19]. In these studies the dimensions of the system
were chosen similar to those of a real bacterium, further
suggesting that solutions breaking rotational symmetry can
only be observed in cells with a larger than normal radius.

The surface wave patterns of Min-proteins discussed in
this work seem to offer a good handle to experimentally
study the validity of the models for Min-protein dynamics.
If observed they would in particular strongly support the
mechanism of self-organization of the Min oscillations.
Furthermore, an analysis of waves in the presence of
fluctuations together with carefully performed experiments in
the in vitro setting suggested above should provide strong
hints on the relative importance of cooperative effects during
binding and of aggregation currents of membrane-bound
proteins. In our opinion, these experiments are of particular
interest as they do not involve a biochemical analysis of the
molecular Min-protein interactions, but are based on their
collective behavior.

Appendix. Calculation of the linear spreading
velocity

In this appendix, we calculate the linear spreading velocity of a
localized perturbation into an unstable stationary homogenous
state of the dynamic equations (3) and (4) in the situation
discussed in section 2.2. The distributions cD and cE are
assumed to be homogenous, their values are free parameters.
In order to simplify our calculations, we set k1 = k2 = 0 and
restrict ourselves to parameter values such that ωDωE < ω2

de,
where ωD = ωDCD and ωE = ωECE . Consequently, for each
wave vector q at most one of the eigenmodes grows in time
and the corresponding growth exponent is real. In an open
geometry, the asymptotic solutions are stationary if the rates
satisfy the condition above.
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The linear spreading velocity is obtained from the solution
of the dynamic equations that are obtained by linearizing (3)
and (4) with respect to a stationary homogenous state. In
general, the solution c = (cd, cde) to these equations can be
written as

c(x, t) = 1

2π

∫ ∞

−∞
dq e
(q)t+iqx c̄(q), (A.1)

where c̄(q) = ∫ ∞
−∞ dx c(x) exp(−iqx) denotes the Fourier

transform of c(x, t = 0). The matrix 
(q) is the time-
evolution operator of the linearized dynamic equations in
Fourier representation


(q) =
(−ωD − ωE + (k̃ − Dd)q

2 + k̃q4 −ωD

ωE −ωde

)
, (A.2)

where k̃ is the dimensionless control parameter k̃ =
c2

maxk
2
1

/
(ωdek2). Let e1(q) denote the normalized eigenmode

of 
(q) associated with the eigenvalue λ1, that has the larger
real part of the two eigenvalues. Then, we can write

c(x, t) = 1

2π

∫ ∞

−∞
dq eλ1(q)t+iqx(c̄(q) · e1(q))e1(q). (A.3)

Now consider a uniformly translated reference frame with
coordinates ξ = x − v∗t . Here, v∗ is the average spreading
velocity of the perturbation in the limit of large times.
Adapting coordinates to this frame, equation (A.3) becomes

c(x, t) = 1

2π

∫ ∞

−∞
dq eiqξ e(λ1(q)+iv∗q)t (c̄(q) · e1(q))e1(q).

(A.4)

As we have chosen the frame such that we ride on the front,
we must have for consistency v∗ = λ1,r

qi
, where subscripts r

and i denote the real and imaginary parts, respectively, i.e.
q = qr + iqi and λ1 = λ1,r + iλ1,i . Otherwise the absolute
value of e(λ1(q)+iv∗q)t would decay or grow exponentially. v∗

is the velocity with which the front spreads in the linearized
case. As for the chosen parameter regime the emerging pattern
in the wake of the front is stationary with wavelength 	,
the concentration c(ξ, t) in the moving frame oscillates with
frequency ω = v∗/	. From (A.4), we can read off ω as
(λ1,i (q

∗) + v∗q∗
r ). This determines 	 provided we know v∗.

For large times, the integral (A.4) can be approximated
by focusing on the factor E(t) = e(λ1(q)+iv∗q)t . Assuming a
holomorphic integrand, the integration contour is first moved
into the complex plane such that integration is along a contour
of constant phase of E(t). Then a saddle-point approximation
is performed [38]. At a saddle point on a contour of constant
phase, the gradients of the real and the imaginary part of E(t)

have to vanish. Therefore, the exponent (λ1(q) + iv∗q)t has
to obey ∂(λ1,r − v∗qi)/∂qr |q∗ = ∂(λ1,r − v∗qi)/∂qi |q∗ = 0.
Consequently,

∂λ1,r/∂qi |q∗ = λ1,r/qi |q∗ (A.5)

∂λ1,r/∂qr |q∗ = 0, (A.6)

where

λ1(q) = p(q)/2 +
√

p(q)2/4 − ωDωE with

p(q) = ωde − ωD − ωE + (k̃ − Dd)q
2 − k̃q4.

We have solved equations (A.5) and (A.6) numerically.
To this end we neglected ωDωE in the expression for
λ1(q). The good agreement between the values we
obtain for the asymptotic linear spreading velocity and
the results from our numerical solutions of the dynamic
equations (3) and (4) justifies this approximation, see
figure 7(d).

Glossary

Aggregation current (AC). Aggregating transport of
Min-proteins in the membrane-bound state due to particle
interactions.

Cooperative attachment (CA). Attachment of cytosolic
Min-proteins under the influence of membrane-bound
Min-proteins due to particle interactions.

Cytosol. Internal fluid of a cell. It is surrounded by the
cytoplasmic membrane, a lipid bilayer.

Chiral pattern. A pattern is called chiral if it differs from its
mirror image.

Linear stability analysis. In a linear stability analysis, the
stability of a state against small perturbations is assessed by
linearizing the dynamic equations with respect to the state.

Linear spreading velocity. The velocity at which a localized
perturbation spreads into a stationary, unstable state of a
system according to the linearized dynamics.

Standing and traveling wave. A traveling wave is a
concentration profile that moves with a certain velocity along
a direction. A standing wave is a concentration profile whose
amplitude is periodically modulated in time.
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