April 15, 2004

Euromech Colloquium 454, Marseille

#### High Resolution DNS of Turbulence and its Application to LES Modeling

A review

Y. Kaneda

Nagoya University

Collaboration withIshihara T.(Nagoya Univ.)Yoshida K.(Nagoya Univ.)Yokokawa M.(Grid Computing Center)Itakura K.(Earth Simulator Center)Uno A.(Earth Simulator Center)



#### High Resolution DNS a) DNS with up to 4096<sup>3</sup> grid points

- an overview

#### b) Regeneration of small eddies

- a support for the idea of LES

#### II) LES Modeling (spectral approach) a) Deterministic

- an application of DNS data alaysis

- b) Stochastic
  - an attempt for predictability analysis

#### I) High Resolution DNS

### a) DNS with up to 4096<sup>3</sup> grid points

#### **Computational Facilities & Performance**

#### 🛨 1 (512<sup>3</sup>) & 🛨 2 (1024<sup>3</sup>)

Fujitsu VPP500/42, VPP5000/56 (Nagoya UCC) 0.5TFLOPS(peak), Memory 0.9TB

**★**3 (2048<sup>3</sup>) & **★** 4 (4096<sup>3</sup>)

Earth Simulator <u>40TFlops (peak), 16.4TFlops(sustained)</u>, Memory:10TB

> Yokokawa, Itakura, Uno, Ishihara & Kaneda (SC2002) ; http://www.sc-conference.org/sc2002/

#### History of representative DNS

Incompressible Homogeneous Isotropic Turbulence under periodic BC



## Two series of DNS data

#### Alias free spectral method



Kaneda et al. (2003)

#### Analysis of the DNS data by ES

underway

• DNS's up to  $R_{\lambda} = 1200$  suggest

Normalized dissipation  $\mathcal{E} \rightarrow \text{const}$ , as  $\mathbb{R} \rightarrow \infty$ 

- Energy Spectrum
- Scaling & Statistics of 4<sup>th</sup> order velocity moments

mean squares of  ${}^{2}p$  ,  $\omega \cdot \omega$  , SS =  $\epsilon/(2\nu)$ 

High order structure functions,

pdf, joint-pdf, intermittency

- Anisotropic scaling, effects of anisotropy,
- Inertial range structure,
- Dissipation range spectrum, .....
- Analysis at coarse grained level, alignment of  $\omega$  vs. S,  $\Pi$ , etc.

#### **Direct & Qualitative Examination of Theories**

#### results of data analysis -1

• Energy spectrum • Inertial subrange  $E(k) \propto k^{-5/3-\alpha}$  for  $k\eta < 0.04$  and  $R_{\lambda} > 500$  $\alpha \approx 0.1$ 

• Near dissipation range  $E(k) \propto C(k\eta)^{\alpha} \exp[-\beta(k\eta)]$  $\alpha, \beta, C$  tend to constants as  $R_{\lambda} \to \infty$ 

#### results of data analysis -2

- 1. Moments of dissipation and enstrophy
  - Ratio ~ const. for  $R_{\lambda}$  > 600
- 2. Spectra of dissipation and enstrophy

$$\overline{\Omega}(k) \approx \overline{D}(k) \approx C R_{\lambda}^{0.25} (k\eta)^{-2/3}$$

- 3. Spectrum of pressure
  - P(k) ~ k  $^{-7/3}$  for R<sub> $\lambda$ </sub>>600

#### results of data analysis -3

- 1. Skewness and Flatness
  - Transition at  $R_{\lambda} \sim 700$  ?... Not observed
  - S F<sup>a</sup>, a~1/3
- 2. 4 rotational invariants
  - $I_1, I_2, I_3, I_4$  ... the same  $R_{\lambda}$ -scaling for  $R_{\lambda} > 400$
- 3. Scaling of fluid-particle acceleration
  - ~ An empirical formula for  $R_{\lambda}$ >400 (Hill 2002) (but for  $k_{max}$  = 1)



#### **Visualization**

## **DNS** data

Table 2: DNS parameters and turbulence characteristics at  $t = t_f$ .  $\Delta t$  is the time increment,  $\langle \epsilon \rangle$  the mean rate of energy dissipation per unit mass, and  $\lambda$  the Taylor micro-length scale. (Values except for N = 4096 are quoted from Ref. 3).

| Series | N    | $R_{\lambda}$ | $k_{\max}$ | $\Delta t (\times 10^{-3})$ | $t_f$ | $\nu(\times 10^{-4})$ | $\langle \epsilon \rangle$ | L    | $\lambda$ | $\eta(\times 10^{-3})$ | _     |
|--------|------|---------------|------------|-----------------------------|-------|-----------------------|----------------------------|------|-----------|------------------------|-------|
| 1      | 256  | 167           | 121        | 1.0                         | 10    | 7.0                   | 0.0849                     | 1.13 | 0.203     | 7.97                   | -     |
|        | 512  | 257           | 241        | 1.0                         | 10    | 2.8                   | 0.0902                     | 1.02 | 0.125     | 3.95                   |       |
|        | 1024 | 471           | 483        | 0.625                       | 10    | 1.1                   | 0.0683                     | 1.28 | 0.090     | 2.10                   |       |
|        | 2048 | 732           | 965        | 0.4                         | 10    | 0.44                  | 0.0707                     | 1.23 | 0.056     | 1.05                   |       |
|        | 4096 | 1131          | 1930       | 0.25                        | 4.52  | 0.173                 | 0.0752                     | 1.09 | 0.034     | 0.51                   |       |
| 2      | 256  | 94            | 121        | 1.0                         | 10    | 20                    | 0.0936                     | 1.10 | 10.326    | 17.1                   | × 200 |
|        | 512  | 173           | 241        | 1.0                         | 10    | 7.0                   | 0.0795                     | 1.21 | 0.210     | 8.10                   |       |
|        | 1024 | 268           | 483        | 0.625                       | 10    | 2.8                   | 0.0829                     | 1.12 | 0.130     | 4.03                   |       |
|        | 2048 | 429           | 965        | 0.4                         | 10    | 1.1                   | 0.0824                     | 1.01 | 0.082     | 2.00                   |       |
|        | 4096 | 675           | 1930       | 0.25                        | 3.8   | 0.44                  | 0.0831                     | 1.05 | 0.052     | 1.01                   |       |
|        |      |               |            |                             |       |                       |                            |      | 2         |                        | × 100 |

#### Image of Flow Field (Vorticity) by DNS with N^3=2048^3



 $2\pi$ 



#### Close up view-1



#### Close up view-2



#### Close up view-3



η



ัช<sup>ั</sup> 0.01 0.01 0.1 1

Fig. 5.  $\Omega(k)$  (thick lines) and D(k) (thin lines) spectra compensated by  $R_{\lambda}^{-0.25}(k\eta)^{2/3}/(\nu^{-5} \langle \epsilon \rangle^7)^{1/4}$ .

J.Phys.Soc Jpn (2003),983-98



#### Some difference from DNS with lower resolution: -2

 $\prod_{i=1}^{n} \mathbf{E}$  (width, flat, stationarity)



(Phys Fluids 12(2003) | 21 | 24)

#### Energy Spectrum



FIG. 5: Compensated energy spectra from DNSs with (A) 512<sup>3</sup>, 1024<sup>3</sup>, and (B) 2048<sup>3</sup>, 4096<sup>3</sup> grid points. Scales on the right and left are for (A) and (B), respectively.

(Phys Fluids 12(2003),L21-L24)

## Summary of I-a

### Structure at small scales vs. large eddies vs. clusters

like leaves/twigs/branches/trees vs. forest (cf. CS2002)

#### Q: Is the vortex so that important?

for the understanding large scale dynamics

 ■2048, 4096 DNS give wide inertial range
 → enables quantitative examination of theories of inertial range example : II-a

#### I) High Resolution DNS

## b) Regeneration of small eddiesa support for the idea of LES

#### Velocity fields with different initial states in higher *k*









#### Kinetic nergy ontour





















By K.Yoshida

#### original

copied





128^3 kc-32 vorticity







hy Vamaguchi Vachida

## Summary of I-b

 Importance of Large eddies small eddies are subordinate butterfly effect vs. lizard-tail effect

 $\rightarrow$ 

A support for the soundness of the idea of LES

#### II) LES Modeling (spectral approach)

#### a) Deterministic LES - an application of DNS data analysis



How to determine ?

## **Requirement for the model**

• Energy Spectrum  $E(k) = \frac{1}{2} \sum_{k-1/2 < |\mathbf{k}'| < k+1/2} \langle u(\mathbf{k}') \cdot u(-\mathbf{k}') \rangle,$ 

Require the model to simulate E(k)

$$= E(k), \qquad \frac{\partial}{\partial t} \tilde{E}(k) = \frac{\partial}{\partial t} E(k), \qquad \text{for } k < k_c.$$

$$V_e(k \mid k_c) = -\frac{T(k) - T(k \mid k_c)}{2k^2 E(k)}$$

 $\tilde{E}(k)$ 

$$\left(\frac{\partial}{\partial t} + 2\nu k^2\right) E(k) = T(k)$$

$$\frac{\partial}{\partial t} + 2[\nu + \nu_e(k \mid k_c)k^2] E(k) = T_c(k \mid k_c)$$



#### Closed equations for 2-point statistics

#### 2-point closures

- **LRA** (Lagrangian Renormalized Approximation)
- Simplest among Lagrangian closures
- Free from any ad-hoc parameter
- Fully consistent with

Galilean invariance/Kolmogorov spectrum

#### Example of performance of the LRA for 2<sup>nd</sup> order moments:



FIG. 1. Comparison of the one-dimensional energy spectrum determined by (Phys Fluids 12(2000), 155-168) the LRA (MLRA) with the experimental data (Refs. 25 and 26).

## T(k) in 2P closures

$$T(k) = \int \int_{\Delta} dp dq \ k^3 p q b_{kpq} \theta_{kpq} q^{-2} E(q) [p^{-2} E(p) - k^{-2} E(k)],$$

$$\tilde{T}(k|k_c) = \int \int_{\Delta_1} dp dq \ k^3 p q b_{kpq} \tilde{\theta}_{kpq} q^{-2} \tilde{E}(q) [p^{-2} \tilde{E}(p) - k^{-2} \tilde{E}(k)],$$

$$\theta_{kpq} = \int_{-\infty}^t ds \ G(k,t,s) G(p,t,s) G(q,t,s), \qquad k_c$$



#### • Assume $k_c$ is in the inertial subrange.

 Substitute similarity solution of E(k) and G(k) of LRA into the equations for T(k) (Universality in small scales).

$$E(k) = K_o \epsilon^{2/3} k^{-5/3}, \qquad K_o = 1.72$$

Simplification,  $\tilde{G}(k) = G(k)$ 

## Spectral eddy viscosity

$$\begin{split} \nu_e(k|k_c,t) &= [\tilde{\epsilon}(t)]^{1/3} k_c^{-4/3} \nu_e^* \left(\frac{k}{k_c}\right),\\ \tilde{\epsilon}(t+\Delta t) &= \int_{k < k_c} dk \ 2\nu_e(k|k_c,t) k^2 u(k) \cdot u(-k), \end{split}$$



## LES of 3D turbulence



# of deg. of freedom  $\rightarrow$  1/32000 against DNS with 1024<sup>3</sup>

# LES model of 2D turbulence with inverse cascade range

#### Negative eddy viscosity





#### • LES based on Gaussian Filter (GLES)

• Gaussian Filter -- easily applied to FD schemes



## LES applied to FD schemes (1)

2048×1024 (T682)

SH spectral E(k) 10-2 10-3 10-4  $\propto k^{-5/3}$ 10-5 10-6 10-7 103 k 102 100 101

**DNS** 



## LES applied to FD schemes (2)





# Application to stratified turbulence

Assume k<sub>c</sub> is in the inertial subrange.
 In SGS,

 u(x) -- quasi isotropic turbulence,
 Density fluctuation field -- almost passive scalar.

Yoshida, Ishihara & Kaneda (2002)

## Eddy viscosity and Eddy diffusivity

$$V_e(k \mid k_c) = \varepsilon^{1/3} k_c^{-4/3} V_e^* \left(\frac{k}{k_c}\right)$$
$$\kappa_e(k \mid k_c) = \varepsilon^{1/3} k_c^{-4/3} \kappa_e^* \left(\frac{k}{k_c}\right)$$

Eddy Prandtl number

 $\Pr_{e}(k \mid k_{c}) = \frac{\nu_{e}(k \mid k_{c})}{\kappa_{e}(k \mid k_{c})}$ 



### **LES of stratified turbulence**



$$N = 3\pi$$

$$k_b = 231$$
Computed resolution
$$512^3$$
Visualized resolution
$$64^3$$
Isosurface of
$$\rho = +2\sigma_{\rho} \text{ (red and blue )}$$

$$\rho = -2\sigma_{\rho}$$

$$\omega = 2\sigma_{\omega} \text{ (green)}$$



#### An application of DNS-data analysis

Examination of Model:

Eddy viscosity Comparison with DNS and theory

Compensated energy spectrum

Series 1



**II) LES Modeling (spectral approach)** 

b) Predictability & Stochastic LES

### LES so far

## **Good for energy**

but ....

## **LES & Predictability**

From the view point of the reduction of Information;

$$? = < ? | A > + (Res.)$$
Projection to a space A Residue

 the Dim of Res. is huge Dim (Res.) >> Dim (A)

(in fact, the correlation between model and DNS is poor)

Difference of u<sub>1</sub>, u<sub>2</sub>

Impossibility to identify small scale conditions/noise → inevitable uncertainty, unpredictability

## Error growth due to uncertainty in SGS

 $u^{(1)}, u^{(2)}$ : Two velocity field with different initial conditions in large wavenumber modes ( $k > k_c$ ).

## Difference between two fields $\delta u = u^{(1)} - u^{(2)}$

becomes non-zero in small wavenumber modes (  $k \le k_c$  ) for t>0.

#### Uncertainty due to SGS uncertainty; Predictability

t = 0.25T



Cinetic nergy ontour











t = T









## Probabilistic LES (PLES) model

- Estimate the prediction error due to the uncertainty in SGS.
- Introduce random external forcing.

cf. Kraichnan, Bertoglio, Chasnov

$$\begin{pmatrix} \frac{\partial}{\partial t} + [\nu + \underline{\mu_e(k|k_c)}]k^2 \end{pmatrix} \tilde{u}_i^{(\alpha)}(k) = M_{imn}(k) \sum_{\substack{k=p+q}} \tilde{u}_m^{(\alpha)}(p) \tilde{u}_n^{(\alpha)}(q)$$
  
eddy viscosity  $+f_i(k,t) + (f_e^{(\alpha)})_i(k|k_c,t), \ \alpha = 1,2$ 

Forcing spectrum

$$F(k|k_c,t) = 4\pi k^2 \int_{-\infty}^{t} ds \langle \boldsymbol{f}_{\epsilon}^{(\alpha)}(\boldsymbol{k}|k_c,t) \cdot \boldsymbol{f}_{\epsilon}^{(\alpha)}(-\boldsymbol{k}|k_c,s) \rangle.$$

## Requirement for the PLES model

• Error Spectrum  $\Delta(k) = \frac{1}{4} \sum_{k-1/2 < |\mathbf{k}'| < k+1/2} \langle \delta u(\mathbf{k}') \cdot \delta u(-\mathbf{k}') \rangle.$ 

Require the model to simulate E(k) and (k)

$$\tilde{E}(k) = E(k),$$
  $\frac{\partial}{\partial t}\tilde{E}(k) = \frac{\partial}{\partial t}E(k),$ 

$$\frac{\partial}{\partial t}\tilde{\Delta}(k) = \frac{\partial}{\partial t}\Delta(k),$$

for 
$$k < k_c$$
.

DNS

$$\begin{pmatrix} \frac{\partial}{\partial t} + 2\nu k^2 \end{pmatrix} E(k) = T(k), \\ \left( \frac{\partial}{\partial t} + 2\nu k^2 \right) \Delta(k) = S(k),$$

 $\tilde{\varDelta}(k) = \varDelta(k),$ 

$$\begin{aligned} \mathsf{SLES} \\ \left(\frac{\partial}{\partial t} + 2[\nu + \mu_e(k|k_c)]k^2\right)\tilde{E}(k,t) &= \tilde{T}(k) + F_e(k|k_c), \\ \left(\frac{\partial}{\partial t} + 2[\nu + \mu_e(k|k_c)]k^2\right)\tilde{\Delta}(k,t) &= \tilde{S}(k) + F_e(k|k_c), \end{aligned}$$

# Eddy viscosity and random forcing in PLES

After some simplifications  $\tilde{G}(k) = G(k)$ (k) = E(k) for  $k > k_c$ 10 8  $\mu_e(k|k_c) = \epsilon^{1/3} k_c^{4/3} \mu_e^*(k/k_c),$ 6  $F_e(k|k_c) = 2K_o \epsilon k_c^{5/3} \mu_f^*(k/k_c).$ 2  $\mu_{e}^{*} - \mu_{f}^{*} = \nu_{e}^{*}$ 0



k/k



Yoshida, et al(2002)





 Spectral LES without ad-hoc parameter-tuning

#### ■ DNS data →

a comparative test for the theory of1) eddy viscosity, 2) triad interaction, localness

 Probabilistic LES predictability